变频器在电力系统工程应用中的干扰及解决方法

2017-05-31 05:35蒋宗耀
魅力中国 2016年28期
关键词:干扰变频器电力系统

蒋宗耀

摘 要:随着科学技术的高速发展、变频器以其具有调速范围广、调速精度高、控制的多源化、节能、可靠性高等优势,被越来越广泛的应用到工业生产和生活中。然而,变频器的大量使用,人们在享受这些优越感带来效益和实惠的同时,变频器还存在一个不可忽视的问题,变频器的干扰,变频器的干扰由自生产生,不加以优化和控制会对其它电器设备的运行造成影响,甚至会对整个电网造成污染。因此,如何有效的解决变频器干扰问题是值得我们去思考和讨论。

关键词:变频器 电力系统 干扰

1、变频器概述

变频器主要由三相桥式整流、滤波、逆变系统、监测系统、中央控制系统微处理单元等组成的。

变频器的主要部件为三相桥式整流、滤波、逆变系统、监测系统、中央控制系统微处理单元。在具体的控制过程中,采取了分层控制的方式,既提高了控制系统的控制效果,同时也简化了控制流程,使整个控制流程能够得到有效的优化,在具体的控制效果上满足了实际需要。所以,了解并掌握变频器的工作原理,对做好变频器的应用和提高变频器的应用效果具有重要作用。

伴随着科学技术的不断发展,变频器调速技术作为集成自动控制和电力电子参数的技术模型,具有非常重要的应用价值。不仅能实现节能要求,也能利用软启动等方式,减少设备运行过程中的机械冲击,一定程度上延长电机的使用寿命。正是基于此,在工业领域中设置应用模型,能在提高干扰问题处理效果的基础上,提升经济效益,进一步降低劳动强度,建立更加具有针对性的管控措施。

2、变频器的主要干扰源

变频器包括整流电路和逆变电路,输入的交流电经过整流电路和平波回路,转换成直流电压,再通过逆变器把直流电压变换成不同宽度的脉冲电压(称为脉宽调制电压,PWM)。用这个PWM电压驱动电机,就可以起到调整电机力矩和速度的目的。这种工作原理导致以下三种电磁干扰:

2.1谐波干扰

整流电路会产生谐波电流,这种谐波电流在供电系统的阻抗上产生电压降,导致电压波型发生畸变,这种畸变的电压对于许多电子设备形成干扰,常见的电压畸变是正弦波的顶部变平。谐波电流一定时,电压畸变在弱电源的情况下更加严重,这种干扰的特征是会对使用同一个电网的设备形成干扰,而与设备与变频器之间的距离无关;

2.2射频传导发射干扰

由于负载电压为脉冲状,因此变频器从电网吸取电流也是脉冲状,这种脉冲电流中包含了大量的高頻成分,形成射频干扰,这种干扰的特征是会对使用同一个电网的设备形成干扰,而与设备与变频器之间的距离无关;

2.3射频辐射干扰

射频辐射干扰来自变频器的输入电缆和输出电缆。在上述的射频传导发射干扰的情形中,变频器的输入输出电缆上有射频干扰电流时,由于电缆相当于天线,必然会产生电磁波辐射,产生辐射干扰。变频器输出电缆上传输的PWM电压,同样包含丰富的高频的成分,会产生电磁波辐射,形成辐射干扰。

根据电磁学的基本原理,形成电磁干扰必须具备三要素:电磁干扰源、电磁干扰途径、对电磁干扰敏感的系统。为防止干扰,可采用硬件抗干扰和软件抗干扰。其中,硬件抗干扰是最基本和最重要的抗干扰措施,一般从抗和放两方面入手来抑制干扰,其总体原则是抑制和消除干扰源、切断干扰对系统的耦合通道、降低系统干扰信号的敏感性。具体措施在工程上可采用隔离、滤波、屏蔽、接地等方法。

3、抗电磁干扰的有效对策

3.1采用软件抗干扰措施

具体来讲就是通过变频器的人机界面下调变频器的载波频率,把该值调低到一个适当的范围。如果这个方法不能奏效,那么只能采取下面的硬件抗干扰措施。

3.2进行正确的接地

通过现场的具体调研我们可以看到,现场的接地情况是不甚理想的。而正确的接地既可以是系统有效地抑制外来干扰,又能降低设备本身对外界的干扰,是解决变频器干扰最有效的措施。具体来讲就是做到以下几点:

(1)变频器的主回路端子PE(E、G)必须接地,该接地可以和该变频器所带的电机共地,但不能与其它的设备共地,必须单独打接地桩,且该接地点应该尽量远离弱电设备的接地点。

(2)其它机电设备的地线中,保护接地和工作接地应分开单独设接地极,并最后汇入配电柜的电气接地点。控制信号的屏蔽地和主电路导线的屏蔽地也应分开单独设接地极,并最后汇入配电柜的电气接地点。

3.3屏蔽干扰源

屏蔽干扰源是抑制干扰的很有效的方法。通常变频器本身用铁壳屏蔽,可以不让其电磁干扰泄露,但变频器的输出线最好用钢管屏蔽,特别是以外部信号(从控制器上输出4~20mA信号)控制变频器时,要求该控制信号线尽可能短(一般为20m以内),且必须采用屏蔽双绞线,并与主电路线(AC380)及控制线(AC220V)完全分离。此外,系统中的电子敏感设备线路也要求采用屏蔽双绞线,特别是压力信号。且系统中所有的信号线决不能和主电路线及控制线放于同一配管或线槽内。为使屏蔽有效,屏蔽层必须可靠接地。

3.4合理的布线

具体方法有:

(1)设备的电源线和信号线应尽量远离变频器的输入输出线。

(2)其它设备的电源线和信号线应避免和变频器的输入输出线平行。

如果采取了以上的办法之后还是不能够奏效,那么继续以下办法:

3.5干扰的隔离

所谓干扰的隔离,是指从电路上把干扰源和易受干扰的部分隔离开来,使他们不发生电的联系。通常是在电源和控制器及变送器等放大器电路之间在电源线上采用隔离变压器以免传导干扰,电源隔离变压器可应用噪声隔离变压器。

3.6在系统线路中设置滤波器

设备滤波器的作用是为了抑制干扰信号从变频器通过电源线传导干扰到电源和电动机。为减少电磁噪声和损耗,在变频器输出侧可设置输出滤波器;为减少对电源干扰,可在变频器输入侧设置输入滤波器。若线路中有敏感电子设备如控制器和变送器等,可在该设备的电源线上设置电源噪声滤波器以免传导干扰。

3.7采用电抗器

在变频器的输入电流中频率较低的谐波成分(5次谐波、7次谐波、11次谐波、13次谐波等)所占的比重是很高的,它们除了可能干扰其它设备的正常运行之外,还因为它们消耗了大量的无功功率,使线路的功率因素大为下降。在输入电路内串入电抗器是抑制较低谐波电流的有效方法。根据接线位置的不同,主要有以下两种:

(1)交流电抗器:串联在电源与变频器的输入侧之间。其主要功能有:

a、通过抑制谐波电流,将功率因素提高至(0.75-0.85);

b、削弱输入电路中的浪涌电流对变频器的冲击;

c、削弱电源电压不平衡的影响。

(2)直流电抗器:串联在整流桥和滤波电容器之间。它的功能比较单一,就是削弱输入电流中的高次谐波成分。但在提高功率因素方面比交流电抗器有效,可达0.95,并具有结构简单、体积小等优点。

4、结语

在今后变频器应用过程中,针对变频器在运行中出现的干扰问题不断引进新技术,进一步开发和完善功能,增强抗干扰能力,更好地应用于电力系统以及其他工业工程建设中。

参考文献:

[1]任伟,孙洪雨.变频器在电力系统工程应用中存在的干扰问题及解决方法[J].电源世界,2012,01:45-49.

[2]郑瑜.变频器应用技术中的抗干扰对策的研究[J].湖南文理学院学报(自然科学版),2006,

03:62-64.

[3]梁勤.变频器在控制系统应用中的干扰及抗干扰对策[J].沿海企业与科技,2006,10:76-

79.

猜你喜欢
干扰变频器电力系统
6kV高压变频器运行中的问题及措施
浅析变频器的选型计算
科学处置调频广播信号对民航通信干扰实例
信息时代的电力系统信息化经验谈
探讨电力系统中配网自动化技术
配网自动化技术的应用探讨
关于一次风机变频器紧急停车在运行中误动的处理
浅谈变频器的控制