316L不锈钢多轴载荷下弹塑性有限元分析

2017-07-19 12:16田大将李江华缑之飞
沈阳化工大学学报 2017年1期
关键词:周向单轴不锈钢

田大将, 李江华, 缑之飞, 金 丹

(沈阳化工大学 能源与动力工程学院, 辽宁 沈阳 110142)

316L不锈钢多轴载荷下弹塑性有限元分析

田大将, 李江华, 缑之飞, 金 丹

(沈阳化工大学 能源与动力工程学院, 辽宁 沈阳 110142)

针对316L奥氏体不锈钢进行了一系列非比例载荷下应变控制低周疲劳试验.采用ANSYS 软件进行模拟计算,材料弹塑性特性采用多线性随动硬化模型和von Mises屈服准则,分别采用单轴循环应力应变曲线和圆路径循环应力应变曲线来描述材料属性.在柱坐标系下进行分析,一端固定,另一端施加轴向及周向位移来实现拉扭应变加载.模拟结果表明:针对单轴路径模拟得到的应力与试验值相差仅为3.6 %,扭转路径下差值为5.1 %;而在比例路径和阶梯路径下,模拟得到正应力和剪应力与试验值的差约为12 %及14 %;虽然采用圆路径下循环应力应变关系表征材料属性,但该路径下最大应力误差达到了近12.9 %及14.2 %.

316L; 多轴加载; 应变控制; 滞回线; 有限元分析

316L奥氏体不锈钢以其良好的断裂韧性、高温拉伸、蠕变、疲劳特性、优良的耐腐蚀性以及良好的焊接性能和冷弯成型工艺性,被广泛用于核反应器中的反应容器、管道及热交换器中,同时亦被用于国际热核实验反应堆(ITER)的真空容器,以及第四代核反应容器及中间换热器等压力容器中.

目前,国内外对于316L的疲劳问题进行了许多研究:Roy[1-2]等人通过对316L进行一系列单轴低周疲劳试验,并且对滞回线进行分析,得到在低应变下材料表现为Mashing材料,而在高应变幅值下则表现为非Mashing材料;Pham[3-4]等人分析研究了单轴情况下,随着循环数的变化,微观结构在循环硬化、循环软化及应力饱和时的变化;康国政[5-8]等的研究表明,随着温度的增加,疲劳寿命降低,并且在某一温区内出现动态应变时效.先前针对该材料的研究主要考虑温度、焊接结构等方面的影响,而且大多集中在单轴加载情况下;而实际工程中结构通常承受多轴载荷,研究多轴非比例加载下材料和结构的疲劳寿命更有实际意义.然而,进行多轴疲劳实验需要耗费大量人力物力,随着计算机技术的发展,有限元方法在材料、结构的疲劳问题研究中得到了日益广泛的应用,因此,许多研究人员通过有限元模拟材料和结构件多轴加载情况[9-12].

本文针对316L奥氏体不锈钢进行了5个路径下的疲劳试验,采用ANSYS软件进行多轴弹塑性有限元模拟,将模拟得到的路径与给定路径及模拟得到的应力应变滞回线与试验结果进行了对比分析,比较了不同路径下模拟结果准确程度.

1 疲劳试验

试验材料为316L不锈钢,经过1 080 ℃的保温,再经水冷处理,材料的化学成分如表1所示.采用薄壁管状试件进行多轴疲劳试验,具体试件的尺寸及形状由图1所示,标距段长度12 mm,外径12 mm,壁厚1.5 mm.常温下材料的屈服强度σv=247 MPa,拉伸强度σb=564 MPa,杨氏模量E=200 GPa,泊松比μ=0.3.试验在常温下在多轴液压疲劳试验机上进行,控制等效应变范围分别为0.7 %和1.0 %,Mises等效应变速率为0.2 %/s,完全对称三角波和正弦波控制,当正应力水平下降至半寿命载荷的25 % 时定义为失效.试验所用应变路径及试验条件如表2所示,各路径加载波形如表3所示.

表1 316L不锈钢的化学成分

图1 试件形状及尺寸

表2 应变路径

表3 各路径加载波形

2 有限元分析

2.1 材料属性定义

图2所示为Case0路径0.7 %时第5周次及半寿命14 800周时应力应变响应,可以看出随着循环数的增加,屈服面随之移动,在循环加载中具有明显的随动强化特性,因此,有限元模拟时材料特性采用多线性随动硬化模型,屈服准则采用通用的von Mises屈服准则.

奥氏体不锈钢在非比例路径下表现出明显的非比例附加强化,Case4路径下则更为明显,寿命降低了约90 %.因此,由单轴循环实验得到的循环应力-应变曲线无法准确描述材料非比例循环特性.本文采用Case0路径和Case4路径循环应力应变关系进行模拟计算.

图2 两个不同周次下循环应力应变响应

在材料属性定义时,分别使用Case0与Case4路径下的疲劳试验数据,并应用Osgood-Ramberg方程绘制相应条件下的应力应变曲线,如图3所示.

Osgood-Ramberg方程如下:

ε=σ/E+(σ/K)1/n

(1)

式中弹性模量E=200 GPa,其中Case0、Case4路径下循环硬化系数分别为KCase0=1 365、KCase4=2 573,循环硬化指数分别为nCase0=0.245、nCase4=0.242,由此可以看出两路径下循环硬化指数n相差不大,而循环硬化系数K相差较大,这与文献[13]中规律相同.

图3 Case0及Case4路径下循环应力应变特性

2.2 模型与网格划分

有限元模型及网格划分,如图4所示.取试验中试件标距段长度进行建模,采用计算精度较高、边界为曲线的20节点六面体单元Solid 95进行计算.划分网格时轴向间隔大约1 mm、周向间隔为15°,径向间隔为0.3 mm,共得到7 032 个节点,1 500个单元.

图4 有限元模型及网格

2.3 加载方式及施加边界条件

试验中试件承受拉伸与扭转两个方向载荷,控制方式为应变控制加载.在柱坐标系下进行加载,试件一端固定,另一端施加对应于试验条件的轴向及周向两个方向位移载荷.

位移加载波形与试验中波形相同,加载波形如表3所示.应用ANSYS中Function功能进行波形加载.首先将试验中的应变量转化为模拟中的控制位移量,即将轴向应变转化为右端面节点的轴向位移,扭转应变转化为右端面节点的周向位移,其计算公式分别为:

轴向位移为

ΔL=L-L0=L0(eε-1)

(2)

周向位移为

Δuφ=uφ-uφ0=Lγφ

(3)

其中L0为原长,ε为轴向应变,γφ为剪切应变.在加载周向位移时,在端部最外圈节点施加周向位移Δuφ,由于所有节点转角相同,因此对于端部任一点施加周向位移为

(4)

式中x为任一点距端部圆心距离,r为试件半径,r=6 mm.端部施加位移载荷如图5所示.

图5 周向位移载荷加载图

2.4 模拟路径的有效性验证

由于试验中的控制量为应变,而有限元模拟时施加的则是位移载荷,因此,需要对有限元模型施加路径的正确性进行验证.以等效应变范围1.0 %为例,将模拟路径与试验路径进行对比,如图6所示.从对比结果可以看出:有限元模拟时施加的位移载荷与试验中的控制应变量作用等同,这为模拟的后续进行提供了依据.

图6 模拟路径结果与试验路径结果对比

3 有限元模拟结果与试验结果对比分析

选取薄壁管光滑试件中间部位的应力-应变滞回线与试验半寿命应力应变滞回线进行对比,以等效应变范围1.0 %时各个路径结果为例进行分析,结果见图7.

由图7可以看出:Case0、Case1及Case2这3种应变路径下滞回线的应变最大值与应力最大值可以同时达到;而观察Case3及Case4路径滞回线,由于这两种路径为非比例路径,其滞回线中应变最大值与应力最大值不能同时达到,存在着不同程度的滞后现象,这种滞后现象Case4比Case3路径更为明显,这说明非比例加载下材料循环流动特性与比例加载下情况有很大不同.

图7结果表明:对于Case0路径及Case1路径,模拟滞回线中最大应力值与试验最大应力值误差分别为3.6 %及5.1 %;但是当加载为Case2路径时,模拟正应力应变滞回线中最大正应力相对于试验结果较小,而剪应力应力应变滞回线结果相对吻合较好,两种滞回线模拟最大应力值与试验最大应力值误差分别为14.2 %及9.4 %;对于 Case3路径,模拟的正应力应变滞回线及剪应力应变滞回线结果相对于试验都略微偏小,最大应力值误差分别为12.4 %及14.1 %;Case4路径下模拟结果相对于前面几种路径而言,虽然在Case4路径下采用循环应力应变关系表征材料属性,但整体模拟结果误差较大,最大应力值误差分别为12.9 %及14.2 %.造成上述误差可能是由于模型的建立、材料属性的定义不精确等因素导致.

图7 各路径下应力应变滞回线

由于模拟结果与试验结果比较吻合,因此,文中采用的材料属性的定义具有可信度,这为之后研究缺口件的有限元模拟提供了保证和依据.

4 结 论

(1) 针对316L奥氏体不锈钢进行了不同应变范围和不同路径下应变控制低周疲劳试验.材料弹塑性特性采用多线性随动硬化模型和von Mises屈服准则,考虑到材料明显的非比例附加强化特性,采用单轴和圆路径下循环应力应变关系表征材料属性.

(2) 模拟时采用位移加载,并与试验中应变控制量的吻合程度进行对比分析.结果表明:有限元加载路径可与试验中应变加载路径等效.

(3) 模拟得到的应力应变滞回线与试验结果对比分析表明:Case0路径下最大应力误差为3.6 %;Case1路径下为5.1 %;Case2路径下分别为14.2 %及9.4 %;Case3路径下分别为12.4 %及14.1 %;虽然在Case4路径下采用循环应力应变关系表征材料属性,但该路径下最大应力误差依然分别为12.9 %及14.2 %.

[1] ROY S C,GOYAL S,SANDHYA R,et al.Analysis of Hysteresis Loops of 316L(N) Stainless Steel under Low Cycle Fatigue Loading Conditions[J].Procedia Engineering,2013,55:165-170.

[2] ROY S C,GOYAL S,SANDHYA R,et al.Low Cycle Fatigue Life Prediction of 316 L(N) Stainless Steel Based on Cyclic Elasto-plastic Response[J].Nuclear Engineering and Design,2012,253:219-225.

[3] PHAM M S,SOLENTHALER C,JANSSENS K G F,et al.Dislocation Structure Evolution and Its Effects on Cyclic Deformation Response of AISI 316L Stainless Steel[J].Materials Science and Engineering:A.,2011,528:(7/8):3261-3269.

[4] PHAM M S,HOLDSWORTH S R.Change of Stress-strain Hysteresis Loop and Its Links with Microstructural Evolution in AISI 316L During Cyclic Loading[J].Procedia Engineering,2011,10:1069-1074.

[5] 康国政,高庆,杨显杰,等.316L不锈钢室温和高温单轴循环行为实验研究[J].核动力工程,2001,22(3):252-258.

[6] 陈刚,方加晔,金丹,等.316L不锈钢温度相关与非比例强化的粘塑性本构模拟[J].机械强度,2014,36(4):510-515.

[7] SRINIVASAN V S,SANDHYA R,RAO K B S,et al.Effects of Temperature on the Low Cycle Fatigue Behaviour of Nitrogen Alloyed Type 316L Stainless Steel[J].International Journal of Fatigue,1991,13(6):471-478.

[8] HONG S G,LEE S B.Dynamic Strain Aging during Low Cycle Fatigue Deformation in Prior Cold Worked 316L Stainless Steel[J].Key Engineering Materials,2004,261/263:1129-1134.

[9] 金丹,王巍,田大将,等.非比例载荷下缺口件疲劳寿命有限元分析[J].机械工程学报,2014,50(12):25-29.

[10]吴志荣,胡绪腾,宋迎东.多轴载荷下缺口件的疲劳寿命估算方法[J].工程力学,2014,31(10):216-221.

[11]孙国芹,尚德广,陈建华,等.缺口件两轴循环弹塑性有限元分析及寿命预测[J].机械工程学报,2008,44(2):134-138.

[12]李静,孙强,李春旺,等.多轴载荷下缺口试件疲劳寿命预测研究[J].固体力学学报,2011,32(1):37-42.

[13]陈旭,田涛,安柯.1Cr18Ni9Ti不锈钢的非比例循环强化性能[J].力学学报,2001,33(5):698-705.

316L Stainless Steel Finite Element Analysis of Elastic-plastic Under Multiaxial Loading

TIAN Da-jiang, LI Jiang-hua, GOU Zhi-fei, JIN Dan

(Shenyang University of Chemical Technology, Shenyang 110142, China)

A series of tests for low cycle fatigue are conducted for 316L stainless steel under multiaxial loading at room temperature.Multilinear kinematic hardening rule and von Mises yield criterion are used to describe the elastic-plastic behavior of material using ANSYS software.Material behavior is indicated by uniaxial and circular cyclic stress strain curve.One end is fixed and another is subjected to the axial and circumferential displacement in the cylindrical coordinate.Simulations show that the stress deviation between the simulations and test results is 3.6 % under uniaxial loading,5.1 % for torsional loading.However under proportional and stair loading,the normal stress and shear stress deviation are almost 12 % and 14 %.The maximum deviation of the normal stress and shear stress under circular loading are nearly 12.9 % and 14.2 %,even if the cyclic stress strain curve under circular path is employed.

316L; multiaxial loading; strain control; hysteresis loop; finite element analysis

2014-12-05

国家自然科学基金项目(11102119);辽宁省教育厅项目(L2011066)

田大将(1990-),男,安徽宿州人,硕士研究生在读,国家奖学金获得者,主要从事金属材料疲劳的研究.

金丹(1976-),女,辽宁鞍山人,教授,博士,主要从事金属材料疲劳的研究.

2095-2198(2017)01-0056-07

10.3969/j.issn.2095-2198.2017.01.010

TG155.5

A

猜你喜欢
周向单轴不锈钢
周向拉杆转子瞬态应力分析与启动曲线优化
单轴压缩条件下岩石峰后第Ⅱ种类型应力——应变曲线的新解释
CFRP-钢复合板的单轴拉伸力学性能
80t不锈钢GOR底吹转炉工艺设备改造
PVDF薄膜单轴拉伸及交流极化特性研究
你知道不锈钢中“304”的含义吗
周向定位旋转分度钻模设计
不锈钢微钻削的切屑形成与仿真分析
一种商用轻型载重汽车轮胎
斜单轴跟踪式光伏组件的安装倾角优化设计