VASP基因RNA干扰慢病毒表达载体的构建与鉴定

2018-12-21 12:41王静魏蕾邱堃
中国医药导报 2018年25期

王静 魏蕾 邱堃

[摘要] 目的 构建靶向血管扩张刺激磷蛋白(VASP)基因RNA干扰慢病毒表达载体。 方法 将前期构建的pcDNA6.2-miRVASP进行测序鉴定,筛选阳性克隆。通过Gateway技术中的BP反应及LR反应,将携带miRVASP的表达框克隆至慢病毒目的载体pLenti6/V5-DEST,构建靶向VASP基因的RNA干扰慢病毒表达载体pLenti6/V5-miRVASP;接着将其与慢病毒包装混合物共转染293FT细胞,收集病毒颗粒,侵染胃癌BGC-823细胞。 结果 慢病毒表达载体测序结果表明,构建的载体与预期完全一致。用收集的携带miRVASP表达框的慢病毒颗粒侵染BGC-823细胞,荧光显微镜下可见多量细胞表达强绿色荧光,证明包装产生的慢病毒颗粒能侵染BGC-823细胞。 结论 成功构建了靶向VASP基因的RNA干扰慢病毒表达载体,并包装产生慢病毒颗粒原液,成功侵染BGC-823细胞,为进一步在体内实验中研究VASP在胃癌侵袭转移中的作用奠定了基础。

[关键词] 血管扩张刺激磷蛋白;RNA干扰;慢病毒载体

[中图分类号] R737 [文献标识码] A [文章编号] 1673-7210(2018)09(a)-0009-04

[Abstract] Objective To construct the lentiviral RNA interference expression vector targeting vasodilator-stimulated phosphoprotein (VASP) gene. Methods The pre-constructed pcDNA6.2-miRVASP was identified by DNA sequencing and the positive clones were screened. The miRVASP fragment was cloned into destination vector pLenti6/V5-DEST by Gateway techology, including BP and LR reaction, RNA interference lentiviral vector pLenti6/V5-miRVASP targeting VASP gene was constructed. Then the 293FT cells were co-transfected with the plasmid lentiviral expression vector pLenti6/V5-miRVASP and lentiviral packaging mix. The virus particles were collected and infected into gastric cancer BGC-823 cells. Results The constructed lentiviral expression vector pLenti6/V5-miRVASP was introduced into E.coli Stbl3 for amplification. DNA sequencing results showed that the constructed vector was exactly as expected. BGC-823 cells were infected with the collected lentiviral stocks carrying the miRVASP expression cassette. The results showed that a large number of cells could express strong green fluorescence, demonstrated that the packaged lentiviral stocks could infect BGC-823 cells. Conclusion The RNA interference lentiviral vector targeting VASP gene is successfully constructed and packaged as the lentiviral stocks to successfully infect BGC-823 cells, which lay the foundation for the further study of the role of VASP in gastric cancer metastasis in vivo.

[Key words] VASP; RNAi; Lentiviral vector

胃癌是最常见的消化道恶性肿瘤之一。在我国,胃癌发病率居各类恶性肿瘤第二位[1]。尽管近年来胃癌病理遗传学和分子机制研究取得了许多进展,但胃癌转移仍然是癌症相关死亡的主要原因之一。肿瘤转移是一个多步骤的过程[2],以间充质模式迁移的肿瘤细胞,首先形成由肌动蛋白丝(F-actin)网络组装驱动的细胞膜突起(伪足);接着在原癌基因如c-Src及c-Abl激酶等分子和细胞骨架调节蛋白协调作用下,促进细胞迁移和侵袭[3]。血管扩张刺激磷蛋白(vasodilator-stimulated phosphoprotein,VASP)是Ena/VASP蛋白家族成员之一[4]。其EVH2结构域介导其与球状肌动蛋白(G-actin)及F-actin的结合。最新研究表明,VASP在人肺腺癌、胃癌、乳腺癌等实体肿瘤中蛋白表达水平上调[5-8]。VASP磷酸化能抑制结肠癌细胞侵袭性伪足形成[9]。因此,我们推测VASP表达及活性可能影响肿瘤浸润进展。本研究利用前期构建的靶向VASP基因的RNA干扰真核表达载体pcDNA6.2-miRVASP及慢病毒目的载体[10],应用Gateway重组技术中的BP反应和LR反应,构建靶向VASP基因的RNA干擾慢病毒表达载体,并包装产生慢病毒颗粒,成功侵染胃癌细胞,以期为深入研究VASP的肿瘤生物学功能奠定基础。

1 材料与方法

1.1 主要材料

H-DMEM培养基购自Hyclone公司;胎牛血清购自杭州四季青公司;左旋谷氨酰胺、LipofectamineTM2000、BP ClonaseTM Ⅱ Enzyme Mix、LR ClonaseTM Ⅱ Enzyme、蛋白酶K、Opti-MEM培养基、pcDNA6.2-GW/EmGFP载体、pDONRTM221载体、pLenti6/V5-DEST载体、慢病毒包装混合物(Packing Mix Lentiviral)、239FT细胞株、感受态均购自lnvitrogen公司;质粒小提试剂盒购自北京天根公司;1 kb DNA Ladder购自Fermentas公司;Eag Ⅰ购自NEB公司;质粒大提试剂盒购自Axygen公司。BGC-823胃癌细胞株购自武汉大学保藏中心。靶向VASP基因的小干扰RNA真核表达载体pcDNA6.2-miRVASP由本实验室构建保存。

1.2 方法

1.2.1 慢病毒入门载体pDONRTM221-miRVASP载体的构建 PcDNA6.2-GW/EmGFP-miR载体携带有attB位点,可与携带有attP位点的pDONRTM221载体进行BP重组反应,构建带有目的基因片段的入门克隆载体。首先将pcDNA6.2-miRVASP载体用Eag Ⅰ酶切。取等摩尔pcDNA6.2-miRVASP与pDONRTM221,加入BP ClonaseTM Ⅱ Enzyme Mix,25℃孵育16 h,生成入门克隆pDONRTM221-miRVASP,转化感受态,涂布于LB平板,37℃培养12~16 h,挑取单菌落,置于LB培养基中扩增,抽提质粒。

1.2.2 慢病毒表达载体pLenti6/V5-miRVASP的构建 在LR ClonaseTM Ⅱ Enzyme Mix作用下,携带有attL位点的入门克隆pDONRTM221-miRVASP和目的载体pLenti6/V5-DEST发生重组反应,生成慢病毒表达载体pLenti6/V5-miRVASP。首先取等摩尔的pDONRTM 221-miRVASP和pLenti6/V5-DEST载体,加入LR ClonaseTM Ⅱ Enzyme Mix,25℃孵育16 h,转化感受态,涂布于LB平板,培养12~16 h,挑取单菌落,于LB培养基中扩增,抽提质粒,并进行PCR鉴定,将PCR产物送测序。

1.2.3 慢病毒表达颗粒的包装与收集 培养293FT细胞。取9 μg慢病毒包装混合物和3 μg慢病毒表达载体质粒加入Opti-MEM培养基中。取36 μL LipofectamineTM2000加入Opti-MEM培养基中,室温静置5 min。将含质粒和脂质体的培养液混和,室温孵育20 min。接着加入293FT细胞,培养48~72 h,收集含病毒的细胞培养上清液,过滤分装,-80℃储存备用。

1.2.4 慢病毒表达颗粒侵染胃癌细胞株BGC-823 培养BGC-823细胞,用收集的携带miRVASP DNA表达片段的慢病毒颗粒侵染BGC-823细胞。观察细胞形态及EmGFP表达。

2 结果

2.1 靶向VASP基因的RNA干扰真核表达载体pcDNA6.2-miRVASP的鉴定

将重组质粒进行PCR鉴定及测序。测序结果表明,pcDNA6.2-miRVASP包含设计的SR33-2的DNA片段。

2.2 慢病毒入门载体pDONRTM221-miRVASP的构建

利用BP反应,成功构建携带miRVASP DNA表达片段的入门载体。质粒凝胶电泳图。见图1。

2.3 慢病毒表达载体pLenti6/V5-miRVASP的构建与鉴定

通过LR反应,将入门克隆pDONRTM221-miRVASP与目的载体pLenti6/V5-DEST进行重组,得到慢病毒表达载体pLenti6/V5-miRVASP。质粒凝胶电泳图,见图2。pLenti6/V5-DEST 质粒全长8688 bp,被置换的碱基片段长1704 bp,插入含miRVASP DNA表达片段约64 bp+936 bp=1000 bp。因此重组质粒长约7984 bp。将重组质粒PCR产物进行测序,证实表达载体成功构建。

2.4 慢病毒表达颗粒的包装

将慢病毒表达载体pLenti6/V5-miRVASP与慢病毒包装混合物共转染293FT细胞48 h后,在荧光显微镜下观察。分别可见较多量细胞表达强绿色荧光,见图3。证实质粒转染入293FT细胞,细胞部分融合,可见多核复合体出现,细胞内可见多量病毒颗粒。

2.5 慢病毒能侵染胃癌细胞株BGC-823

将收集的携带miRVASP DNA表达片段的慢病毒颗粒侵染BGC-823胃癌细胞。24 h及48 h后,荧光显微镜下观察。镜下分别可见较多量的BGC-823细胞表达强绿色荧光,见图4。证实包装产生的慢病毒颗粒能侵染BGC-823细胞。

3 讨论

肌动蛋白细胞骨架介导了许多细胞生命活动,包括细胞黏附、细胞运动和细胞形态改变。肌动蛋白细胞骨架的功能失调与肿瘤的发生与转移密切相关。如肌动蛋白结合蛋白(actin binding proteins,ABPs)在肿瘤中的表达失调[11-12]。VASP是一种涉及细胞膜突起动力学的肌动蛋白结合蛋白[13]。VASP主要位于层状伪足前导端、丝状伪足顶端和黏附斑。在细胞迁移的层状伪足前导端,VASP作为脚手架蛋白将伸长的F-actin与ABPs结合,调节由肌动蛋白聚合驱动的伪足形成和稳定。在丝状伪足顶端,VASP在F-actin倒刺末端施加抗盖帽力,促进丝状伪足形成和伸长。VASP通过重排细胞骨架,并促进F-actin伸长和成束,成为启动和维持伪足区域的关键抗盖帽蛋白[14-15]。因此,VASP在重要的生理和病理過程中发挥重要作用,包括损伤修复、神经元发育等生理过程,以及炎症、肿瘤浸润转移等病理过程。

VASP與肿瘤细胞运动性密切相关。将NIH3T3成纤维细胞中VASP敲除和过表达均能诱导细胞致瘤性转化[16-17]。VASP在肺腺癌中过表达与肿瘤分期相关[5]。VASP沉默后,下调β-连环蛋白表达,影响乳腺癌细胞侵袭[6]。VASP磷酸化在肿瘤侵袭中也发挥关键作用[9,18-19],其机制可能涉及基因的表达调控[20]。不同的研究结果显示,VASP与肿瘤瘤变和转移有关,但其分子机制尚未阐明。我们在前期研究中,发现VASP与胃癌细胞迁移和侵袭相关[10]。

慢病毒载体法有着其他转基因技术不可比拟的优势。本研究将慢病毒载体包装、包膜和目的载体三部分质粒共转染293FT细胞,获得慢病毒原液。Gateway技术以λ噬菌体位点特异重组反应为基础,平移目的序列到目的载体。本研究选取了携带有attB位点的pcDNA6.2-GW/EmGFP载体,与携带有attP位点pDONRTM221载体进行BP反应,构建带有目的基因的入门克隆。然后,将入门克隆与目的载体进行LR反应,构建了携带靶向VASP基因的RNA干扰表达框miRVASP的慢病毒表达载体。接着,分别将慢病毒表达载体与包装混合物共转染239FT细胞,收集细胞上清液,浓缩后,即得到了高滴度、无复制能力和具有良好生物安全性的病毒原液。本实验为进一步对胃癌细胞进行高效侵染,在体内实验中研究VASP在胃癌转移中的作用奠定了基础。

[参考文献]

[1] Chen W,Sun K,Zheng R,et al. Cancer incidence and mortality in China,2014 [J]. Chin J Cancer Res,2018,30(1):1-12.

[2] Zhu T,Hu X,Wei P,et al. Molecular background of the regional lymph node metastasis of gastric cancer [J]. Oncol Lett,2018,15(3):3409-3414.

[3] Sun X,Qi H,Zhang X,et al. Src activation decouples cell division orientation from cell geometry in mammalian cells [J]. Biomaterials,2018,170:82-94.

[4] Breitsprecher D,Kiesewetter AK,Linkner J,et al. Molecular mechanism of Ena/VASP-mediated actin-filament elongation [J]. EMBO J,2011,30(3):456-467.

[5] Dertsiz L,Ozbilim G,Kayisli Y,et al. Differential expression of VASP in normal lung tissue and lung adenocarcinomas [J]. Thorax,2005,60(7):576-581.

[6] Gkretsi V,Stylianou A,Stylianopoulos T. Vasodilator-Stimulated Phosphoprotein (VASP) depletion from breast cancer MDA-MB-231 cells inhibits tumor spheroid invasion through downregulation of Migfilin,beta-catenin and urokinase-plasminogen activator (uPA) [J]. Exp Cell Res,2017, 352(2):281-292.

[7] Zhang Y,Han G,Fan B,et al. Green tea (-)-epigallocatechin-3-gallate down-regulates VASP expression and inhibits breast cancer cell migration and invasion by attenuating Rac1 activity [J]. Eur J Pharmacol,2009,606(1-3):172-179.

[8] Wang Y,Dong H,Zhu M,et al. Icariin exterts negative effects on human gastric cancer cell invasion and migration by vasodilator-stimulated phosphoprotein via Rac1 pathway [J]. Eur J Pharmacol,2010,635(1-3):40-48.

[9] Zuzga DS,Pelta-Heller J,Li P,et al. Phosphorylation of vasodilator-stimulated phosphoprotein Ser239 suppresses filopodia and invadopodia in colon cancer [J]. Int J Cancer,2012,130(11):2539-2548.

[10] Wang J,Zhang J,Wu J,et al. MicroRNA-610 inhibits the migration and invasion of gastric cancer cells by suppressing the expression of vasodilator-stimulated phosphoprotein [J]. Eur J Cancer,2012,48(12):1904-1913.

[11] Chiyomaru T,Tatarano S,Kawakami K,et al. SWAP70,actin-binding protein,function as an oncogene targeting tumor-suppressive miR-145 in prostate cancer [J]. Prostate,2011,71(14):1559-1567.

[12] Zheng S,Huang J,Zhou K,et al. 17beta-Estradiol enhances breast cancer cell motility and invasion via extra-nuclear activation of actin-binding protein ezrin [J]. PloS One,2011,6(7):e22439.

[13] Chen XJ,Squarr AJ,Stephan R,et al. Ena/VASP proteins cooperate with the WAVE complex to regulate the actin cytoskeleton [J]. Dev Cell,2014,30(5):569-584.

[14] Bear JE,Svitkina TM,Krause M,et al. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility [J]. Cell,2002,109(4):509-521.

[15] Bear JE,Gertler FB. Ena/VASP:towards resolving a pointed controversy at the barbed end [J]. J Cell Sci,2009,122(Pt 12):1947-1953.

[16] Quinlan MP. Suppression of epithelial cell transformation and induction of actin dependent differentiation by dominant negative Rac1,but not Ras,Rho or Cdc42 [J]. Cancer Biol Ther,2004,3(1):65-70.

[17] Liu K,Li L,Nisson PE,et al. Reversible tumorigenesis induced by deficiency of vasodilator-stimulated phosphoprotein [J]. Mol Cell Biol,1999,19(5):3696-3703.

[18] Abtan J,Silvain J,Kerneis M,et al. Identification of poor response to P2Y12 inhibitors in ACS patients with a new ELISA-based vasodilator-associated stimulated phosphoprotein (VASP) phosphorylation assay [J]. Thromb Haemost,2013,110(5):1055-1064.

[19] Doppler H,Bastea L,Borges S,et al. The phosphorylation status of VASP at serine 322 can be predictive for aggressiveness of invasive ductal carcinoma[J]. Oncotarget,2015,6(30):29 740-29 752.

[20] Grosse R,Copeland JW,Newsome TP,et al. A role for VASP in RhoA-Diaphanous signalling to actin dynamics and SRF activity [J]. EMBO J,2003,22(12):3050-3061.

(收稿日期:2018-03-23 本文編辑:任 念)