斥水剂作用下非饱和土壤抗剪强度测定及其变化规律

2019-05-11 06:11吴珺华周晓宇邓一超
农业工程学报 2019年6期
关键词:黏聚力摩擦角砂土

吴珺华,林 辉,周晓宇,邓一超,杨 松



斥水剂作用下非饱和土壤抗剪强度测定及其变化规律

吴珺华1,林 辉1,周晓宇1,邓一超1,杨 松2※

(1. 南昌航空大学土木建筑学院,南昌 330063;2. 云南农业大学水利学院,昆明 650201)

为获得斥水性土壤抗剪强度的变化规律,采用二甲基二氯硅烷(dimethyldichlorosilane,DMDCS)作为斥水剂,获得了不同斥水程度的改性砂土。在此基础上配制了不同斥水剂体质比和不同含水率的改性砂土及不同亲水黏土质量分数的改性混合土,并采用非饱和土直剪仪开展了不固结不排水剪强度试验。结果表明:1)不同DMDCS体质比下的5种改性砂土斥水等级均为极度。改性混合土的斥水等级受DMDCS和黏土含量的共同影响。相同DMDCS体质比下,随着黏土含量的增加,改性混合土的斥水性能不断减弱;相同黏土含量下,随着DMDCS体质比的增加,改性混合土的斥水性能不断增大。2)不同DMDCS体质比、含水率及黏土含量下的改性土壤抗剪强度均可用摩尔-库仑强度准则描述。DMDCS体质比从0增至1%时,黏聚力从19.6陡降至10.4 kPa,随后缓慢降低,最终趋于稳定。内摩擦角则随着DMDCS体质比的增加缓慢减小,从0时的16.2o降至3%时的11.8o;随着含水率的增加,改性砂土黏聚力逐渐减小,而内摩擦角呈先升后降形态;随着黏土含量的增加,改性混合土黏聚力显著增大,内摩擦角表现为先升后降,变幅不大。纯改性砂土的黏聚力仅为9.3 kPa,而掺入5%的黏土时,其黏聚力骤升至27.2 kPa;当黏土质量分数为50%时,混合土黏聚力为55.1 kPa;内摩擦角最大值为16.2°(黏土质量分数15%),最小值为9.7°(黏土质量分数50%)。该成果可为深入研究斥水性土壤力学性能及工程应用提供参考。

抗剪强度;含水率;二甲基二氯硅烷;斥水;非饱和土壤;直剪试验

0 引 言

土壤颗粒表面可以被水湿润,宏观上表现为亲水;土颗粒表面难以被水湿润,宏观上表现为斥水[1]。在土壤学和农业科学领域,针对天然土壤斥水性的研究始于19世纪某草原中出现的“蘑菇圈”和“干燥斑”现象[2-3]:在这些土壤表面,水分难以渗入导致上覆植被无法生长[4]。斥水现象在土壤不同组分、利用方式和多种气候条件下广泛存在[5-6],且具有典型季节性[7]。目前国内外学者针对土壤斥水性研究中,主要集中在斥水度测定手段[8-10]、斥水度影响因素[11-14]、土壤斥水化技术手段[15-17]及斥水土壤水分运移[18-21]等方面,重点研究如何减小和消除天然土壤的斥水性,改善其渗透性能以利于农业生产,而并未考虑其力学特性。在土木工程领域,由土壤亲水性导致的工程问题十分普遍,土壤亲水性是产生渗透破坏[22]、土坡失稳[23]、水量损失[24]、海水入侵[25]、水体污染[26]、地基沉降[27]等工程问题的关键因素。除了土壤的渗透性,其力学特性亦是土木工程领域中重点关注问题。Fredlund等[28]发现基质吸力是影响非饱和土壤抗剪强度的重要因素,并提出引入参数φ来反映基质吸力对土体抗剪强度的贡献[29]。Escario等[30]认为采用直剪仪可测定非饱和土壤的抗剪强度,在此基础上吴珺华等[31]结合滤纸法建立了非饱和土壤抗剪强度与基质吸力的经验模型。部分学者从实用化角度出发,采用含水率来反映其对土壤抗剪强度的影响[32-34]。关于斥水性土壤方面,陈俊英等[35]采用高速离心机测定了人工斥水土壤的水分特征曲线,发现土壤基质吸力与含水率、斥水剂含量等密切相关。杨松等[36]通过测定人工改性斥水性土壤的接触角,发现接触角增大到一定值时基质吸力会消失。此外,Harkes等[37-38]采用生物改性法配制并研究了斥水性土壤的力学性质,但大部分工程环境并不利于微生物的成长,无法有效保持改性土壤的性能,限制了生物改性的推广应用。化学改性是目前常用的土壤斥水化改性方法,其对土颗粒成分和结构没有影响,因此可用于调节重塑土壤的渗透性。若能使土壤人为斥水化,那么水就无法轻易渗入土壤内部,渗流也就不易发生,则可显著降低渗流问题的带来的负面影响。同时其力学特性若满足工程需要,那么人为斥水化土壤可推广应用于土木工程领域。Imeson等[39]利用天然斥水性土壤来阻止水分蒸发,延缓蒸发作用以改善农作物生长环境。Sérgio等[40]采用人工斥水砂制作了室内边坡模型,获得了土壤含水率及孔隙水压力的分布,认为其与亲水性边坡的破坏模式完全不同。Zheng等[41]在此基础上,开展了不同条件下斥水土坡的稳定性研究,认为其稳定性要优于亲水土坡。可以看出,目前斥水性土壤的工程应用方面还十分有限,且主要集中在渗流特性的研究,而针对斥水性土壤力学行为的研究相对较少。笔者前期采用二氯二甲基硅烷等3种斥水剂对砂土进行改性,发现二氯二甲基硅烷改性砂土具有良好的斥水效果[42]。在此基础上,本文分别制备了斥水剂体质比、含水率及黏性土含量不同的改性砂土,测定其斥水等级并开展非饱和直剪试验,研究改性砂土总应力抗剪强度指标与斥水剂体质比、含水率、黏性土含量之间的关系,为斥水性土壤的工程应用提供试验基础。

1 材料与方法

1.1 供试材料

试验用土取自南昌某工程现场,风干碾碎过2.36 mm筛后备用。土料基本参数如下:1)砂土:相对密度2.66,最大干密度1.65 g/cm3,最小干密度1.35 g/cm3,饱和含水率42.3%,天然孔隙比0.45,其粒径级配曲线见图1;2)黏土:相对密度2.72,最大干密度1.81 g/cm3,最优含水率19.5%,塑限20.8%,液限41.6%,塑性指数20.8。斥水剂为二甲基二氯硅烷((CH3)2SiCl2,简称DMDCS)。

图1 砂土粒径级配曲线

1.2 试验方案

1.2.1 DMDCS对砂土抗剪强度的影响

将砂土风干分散过2 mm筛后,用去离子水洗净杂质后烘干,目的是消除有机物等杂质对斥水性能的影响。将DMDCS(mL)与砂土(g)分别按1%、1.5%、2%、2.5%和3%共5组不同体积质量比(简称体质比,下同)均匀混合密封至少2 h,获得不同斥水剂含量的改性砂土,分别开展斥水等级测定试验与抗剪强度试验。此外,对天然砂土亦进行抗剪强度试验(DMDCS体质比为0),以便对比分析改性前后砂土抗剪强度性能变化规律。

1.2.2 含水率对砂土抗剪强度的影响

实际工程中的土壤不可避免地会受到水分侵扰,进而影响其力学性能。据此针对DMDCS体质比为2%和3%的砂土,分别配制含水率(质量分数,下同)为3%、5%、7%、11%和13%共5种改性砂土,混合密封至少2 h,获得不同斥水剂含量的改性砂土以开展抗剪强度试验,获得含水率对砂土抗剪强度影响规律。

1.2.3 黏土含量对砂土抗剪强度的影响

对改性砂土斥水性影响因素的研究集中在含水率、pH值、温度、土体级配等方面[43],而将亲水性黏土掺入改性砂土后斥水性能变化的研究相对较少。此处重点研究黏土含量对改性砂土抗剪强度的影响,故仅将DMDCS体质比为3%的改性砂土(g)与黏土(g)分别按0、5%、10%、15%、20%、25%、30%、40%和50%共9种比例,混合配制成3%含水率的改性混合土以开展抗剪强度试验,获得黏土含量对砂土抗剪强度影响规律。

1.3 试验仪器与步骤

采用非饱和土直剪仪开展改性土壤的不固结不排水直剪试验(图2)。常规直剪仪无法控制剪切过程中非饱和试样的水气运移,而该仪器可在试验过程中通过控制排水阀和排气阀的开关情况,保证试样含水率不变。基本参数如下:水平剪切速率为0.001~4.8 mm/min;最大剪切力5 kN;最大法向压力3 200 kPa;位移传感器最大量程10 mm,精度0.01 mm;最大孔隙气压力0.6 MPa。试样为标准环刀样(61.8 mm×20 mm)。试验数据由系统自动采集并保存。试样干密度为1.5 g/cm3,参照《土工试验方法标准》GB/T50123-1999[44]进行直剪试验。相同标准试样制取4个,其法向压力分别为100、200、300和400 kPa,剪切速率0.8 mm/min,6 min内完成剪切。

1. 压力室 2. 步进电机 3. 控制台 4. 力传感器 5. 杠杆 6. 气压表

1.4 数据处理与分析方法

采用滴水穿透时间法(water drop penetration time,WDPT)来测定改性砂土斥水等级,分类标准见表1。采用《土工试验方法标准》GB/T50123-1999[44]对直剪试验数据整理方法对上述方案相应的试验结果进行处理分析,获得不同条件下改性砂土的黏聚力和内摩擦角。由于试验是在不固结不排水条件下进行的,因此上述抗剪强度指标均为总应力强度指标。

表1 基于滴水穿透时间法的斥水等级分类标准

2 结果与分析

2.1 改性土壤斥水等级测定

5种不同DMDCS体质比的改性砂土,其滴水穿透时间均超过3 600 s,其斥水等级均为极度。图3随机给出DMDCS体质比为2%的砂土斥水效果,可以看出改性后的砂土具有显著斥水性。其余改性砂土亦具有此类现象,在此不赘述。

a. 2% DMDCSb. 无DMDCS b. No DMDCS

1.1角人民币 2.水滴(未入渗) 3.水渍(已入渗)

1.RMB 10 cents 2.Water droplets (no infiltration) 3.Waterlogging (infiltration)

注:DMDCS为二甲基二氯硅烷。下同。

Note: DMDCS is dimethyldichlorosilance. Same as below.

图3 改性前后砂土斥水效果

Fig.3 Hydrophobicity results of sandy soils before and after modifying

将5种不同DMDCS体质比的改性砂土按9种不同比例掺入黏土制成改性混合土,测定了其滴水穿透时间和斥水等级(图4)。

图4 改性混合土斥水等级

由图4可知,改性混合土的斥水等级受DMDCS体质比和黏土含量的共同影响。相同DMDCS体质比的改性砂土,随着黏土含量的增加,其滴水穿透时间均有所缩短;当黏土质量分数超过一定值时,其斥水等级迅速降低。当DMDCS体质比为1%时,黏土质量分数达到10%的混合土斥水等级就从极度降至严重;而当DMDCS体质比为3%时,黏土质量分数达到25%时,其斥水等级才从极度迅速降至中等。这表明黏土含量对改性砂土的斥水性有显著影响,随着黏土含量的增加,其斥水效果逐渐减弱直至消失。

2.2 不同DMDCS体质比的改性砂土抗剪强度

图5为不同法向压力下,砂土DMDCS体质比与抗剪强度关系。总体上看,随着DMDCS体质比的增大,相同法向压力下的抗剪强度有所降低,这表明DMDCS对改性砂土的抗剪性能有较大影响。在试验的法向压力范围内,不同DMDCS体质比下试样的抗剪强度与法向压力近似为线性关系,可用摩尔-库仑强度准则进行描述(2>0.9,=0.01),见式(1)。

式中为抗剪强度,kPa;为法向应力,kPa;为黏聚力,kPa;为内摩擦角,(°)。不同DMDCS体质比的改性砂土抗剪强度指标见表2。

图5 改性砂土DMDCS体质比与抗剪强度关系

表2 不同DMDCS含量的改性砂土抗剪强度

注:**,<0.01,下同。

Note: **,<0.01, Same as below.

试验结果表明,随着DMDCS体质比的增加,改性砂土的抗剪强度指标均有不同程度的减小,其中黏聚力从0时的19.6 kPa降至3%时的9.3 kPa,降幅达52.6%;内摩擦角从0时的16.2°降至3%时的11.8°,降幅为27.2%。DMDCS体质比从0增至1%时,黏聚力呈现陡降形态,随后缓慢降低,最终趋于稳定。内摩擦角则随着DMDCS体质比的增加缓慢减小。这表明DMDCS对改性砂土黏聚力的影响远大于对内摩擦角的影响。普通砂土掺入DMDCS后,其颗粒表面性质发生改变,使土壤颗粒表面接触角增大,导致其基质吸力逐渐减小[36],最终导致其抗剪强度降低。当DMDCS体质比超过一定值时,其对改性砂土抗剪强度几乎没有影响。

2.3 不同含水率的改性砂土抗剪强度

图6为不同法向压力下,砂土含水率与抗剪强度关系曲线。可以看出,随着含水率的增大,相同法向压力下的抗剪强度呈先升后降形态,存在峰值。法向应力越大,曲线下降趋势越明显。此外,随着DMDCS体质比的增加,抗剪强度峰值向低含水率方向偏移,即含水率较低时达到峰值。这表明含水率对改性砂土抗剪性能的影响与DMDCS体质比密切相关。结果表明,在试验的法向压力范围内,一定含水率范围内试样的抗剪强度与法向压力可近似为线性关系,亦可用摩尔-库仑强度准则进行描述。将抗剪强度与法向压力拟合结果列于表3。

图6 改性砂土含水率与抗剪强度关系

表3 不同含水率的改性砂土抗剪强度

试验结果表明,随着含水率的增加,改性砂土的黏聚力逐渐减小。当DMDCS体质比分别为2%和3%时,黏聚力分别从3%含水率时的15.5 kPa和15 kPa降至13%含水率时的7.5 kPa和5.2 kPa,降幅达51.6%和65.3%;改性砂土的内摩擦角呈先升后降形态,当DMDCS体质比为2%和3%时,内摩擦角先从3%含水率时的12.7°和11.7°升至15.2°和14.6°,最终降至13%含水率时的13.9°和11.9°。含水率的增加会影响砂土颗粒之间水力联系,提升颗粒之间润滑性能,引起基质吸力降低,最终导致其抗剪强度不断降低。总体上看,含水率对改性砂土的抗剪强度影响很大,尤其对改性砂土黏聚力的削弱作用更为明显。

2.4 不同黏土含量的改性混合土抗剪强度

图7为不同法向压力下,改性砂土中不同黏土含量与抗剪强度关系曲线。可以看出,随着黏土含量的增加,法向应力为100 kPa时的抗剪强度逐渐增加,最终趋于稳定;法向应力为200、300和400 kPa时的抗剪强度均表现为先升后降形态,存在峰值。法向应力越大,曲线下降趋势越明显。结果表明,在试验的法向压力范围内,不同黏土含量下试样的抗剪强度与法向压力亦可用摩尔-库仑强度准则进行描述。将抗剪强度与法向压力拟合结果列于表4。

注:含水率为3%。

表4 不同黏土含量的改性混合土抗剪强度指标

结果表明,随着黏土含量的增加,改性混合土的黏聚力逐渐增大:纯改性砂土的黏聚力仅为9.3 kPa,而掺入5%的黏土后,其黏聚力增至27.2 kPa;当黏土质量分数达50%时,其黏聚力可达55.1 kPa,增幅为492.5%。改性混合土的内摩擦角表现为先升后降形态,最大值为16.2°(黏土质量分数15%),最小值为9.7°(黏土质量分数50%)。由前述分析可知,随着黏土含量的增加,混合土的斥水性不断降低,其基质吸力呈递增形态,导致改性混合土抗剪强度逐渐增大。当黏土含量持续增加时,改性砂土表面覆盖的黏土颗粒不断增多,其对黏聚力的贡献越明显,越接近纯黏性土的黏聚力;而黏土的内摩擦角通常要小于砂土的内摩擦角,导致改性混合土的内摩擦角总体上呈下降形态。黏土含量的增加会削弱改性砂土的斥水性,但其能有效充填砂土颗粒间的空隙,改善了土壤级配,进而影响到改性砂土的力学性能。可以预见,当黏土含量达到一定值时,改性砂土对混合土的抗剪强度几乎没有影响,主要受黏土的抗剪强度控制。

3 结 论

1)不同二甲基二氯硅烷((CH3)2SiCl2,DMDCS)体质比下的5种改性砂土斥水等级均为极度。改性混合土的斥水等级受DMDCS体质比和黏土含量的共同影响。相同DMDCS体质比下,随着黏土含量的增加,改性混合土的斥水性能不断减弱;相同黏土含量下,随着DMDCS体质比的增加,改性混合土的斥水性能不断增强。

2)不同DMDCS体质比下的改性砂土抗剪强度可用摩尔-库仑强度准则描述。随着DMDCS体质比的增加,改性砂土的抗剪强度指标均有所减小。DMDCS体质比对改性砂土黏聚力的影响远大于对内摩擦角的影响。DMDCS使砂土颗粒表面接触角增大,引起基质吸力减小,最终导致其抗剪强度降低。DMDCS体质比继续增加,对改性砂土抗剪强度影响不明显。

3)不同含水率下的改性砂土抗剪强度可用摩尔-库仑强度准则描述(2>0.9,<0.01),其受含水率与DMDCS体质比的共同影响。随着含水率的增加,改性砂土的黏聚力逐渐减小,而内摩擦角呈先升后降形态。含水率的增加会引起基质吸力降低,最终导致其抗剪强度不断降低,尤其对改性砂土黏聚力的削弱作用更为明显。

4)不同黏土含量下的改性混合土抗剪强度可用摩尔-库仑强度准则描述。随着黏土含量的增加,改性混合土的黏聚力显著增大。改性混合土的内摩擦角表现为先增后减。黏土含量的增加会导致混合土的斥水性不断下降,使得改性混合土抗剪强度逐渐增大。当黏土含量增大时,改性砂土表面覆盖的黏土颗粒不断增多,其对黏聚力的贡献越明显,越接近纯黏性土的黏聚力;黏土的内摩擦角通常要小于砂土的内摩擦角,导致改性混合土的内摩擦角总体上呈下降形态。

[1] 王中平,孙振平,金明. 表面物理化学[M]. 上海:同济大学出版社,2015:23-42.

[2] Lozano E, Jiménez-Pinilla P, Mataix-Solera J, et al. . Biological and chemical factors controlling the patchy distribution of soil water repellency among plant species in a Mediterranean semiarid forest[J]. Geoderma, 2013, 207(5): 212-220.

[3] 李毅,商艳玲,李振华,等. 土壤斥水性研究进展[J]. 农业机械学报,2012,43(1):68-75. Li Yi, Shang Yanling, Li Zhenhua, et al. Advance of study on soil water repellency[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(1): 68-75. (in Chinese with English abstract)

[4] Schreiner O, Shorey E C. Chemical nature of soil organic matter[J]. U. S Dept Agr Bur Soils Bull, 1910, 74: 2-48.

[5] Deurer M, Bachmann J. Modeling water movement in heterogeneous water repellent soil: 2. A conceptual numerical simulation[J]. Vadose Zone Journal, 2007, 6(3): 446-457.

[6] Bachmann J, Horton R. Isothermal and nonisothermal evaporation from four sandy soils of different water repellency[J]. Soil Science Society of America Journal, 2001, 65(6): 1599-1607.

[7] Ellerbrock R H, Gerke H H, Bachmann J, et al. . Composition of organic matter fractions for explaining wettability of three forest soils[J]. Soil Science Society of America Journal, 2005, 69(1): 57-66.

[8] Woudt B D V. Particle coatings affecting the wettability of soils[J]. Journal of Geophysical Research Atmospheres, 1959, 64(2): 263-267.

[9] Watson C L, Letey J. Indices for characterizing soil water repellency based upon contact angle-surface tension relationships[J]. Soil Science Society of America, 1970, 34(6): 841-844.

[10] Ritsema C J, Dekker L W. Soil Water Repellency: Occurrence, consequences and Amelioration[J]. Journal of Physics A Mathematical & Theoretical, 2003, 45(6): 2140-2154.

[11] Hurraß J, Schaumann G E. Properties of soil organic matter and aqueous extracts of actually water repellent and wettable soil samples[J]. Geoderma, 2006, 132(1/2): 222-239.

[12] Dekker L W, Ritsema C. J. Wetting patterns and moisture variability in water repellent Dutch soils[J]. Journal of Hydrology, 2000, 231/232: 148-164.

[13] Wallach R, Ben Arie O, Graber E R. Soil water repellency induced by long-term irrigation with treated sewage effluent[J]. Journal of Environmental Quality, 2004, 34(5): 1910-1920.

[14] Micheal J, Noam Weisbrod. Accumulation of oil and grease in soils irrigated with greywater and their potential role in soil water repellency[J]. Science of the Total Environment, 2008, 394(1): 68-74.

[15] Lee W, Jin M K, Yoo W C, et al. Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability[J]. Langmuir, 2004, 20(18): 7665-7669.

[16] Roper M M. The isolation and characterisation of bacteria with the potential to degrade waxes that cause water repellency in sandy soils[J]. Australian Journal of Soil Research, 2004, 42(4): 427-434.

[17] 胡春香,刘永定,张德禄,等. 荒漠藻结皮的胶结机理[J]. 科学通报,2002,47(12):931-937. Hu Chunxiang, Liu Yongding, Zhang Delu, et al. On desert algae and the mechanism of algal crust formation in desert area[J]. Chinese Science Bulletin, 2002, 47(12): 931-937. (in Chinese with English abstract)

[18] Rodriguez-Alleres M, de Blas E, Benito E. Estimation of soil water repellency of different particle size fractions in relation with carbon content by different methods[J]. Science of the Total Environment, 2007, 378(1): 147-150.

[19] 刘春成,李毅,任鑫. 四种入渗模型对斥水土壤入渗规律的适用性[J]. 农业工程学报,2011,27(5):62-67. Liu Chuncheng, Li Yi, Ren Xin, et al. Applicability of four infiltration models to infiltration characteristics of water repellent soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(5): 62-67. (in Chinese with English abstract)

[20] 刘畅,陈俊英,张林,等. 初始含水率对斥水黏壤土入渗特性的影响[J]. 排灌机械工程学报,2018,36(4):354-361. Liu Chang, Chen Junyin, Zhang Lin, et al. Effect of initial soil moisture content on infiltration characteristics of water-repellent clay loam[J]. Journal of drainage and irrigation machinery engineering (JDIME), 2018, 36(4): 354-361. (in Chinese with English abstract)

[21] 陈俊英,张智韬,杨飞,等. 土壤斥水性和含水率变化关系的数学模型[J]. 灌溉排水学报,2009,28(6):35-38. Chen Junying, Zhang Zhitao, Yang Fei, et al. Modeling water repellency and water content of a sand soil[J]. Journal of Irrigation and Drainage, 2009, 28(6): 35-38. (in Chinese with English abstract)

[22] 施成华,彭立敏. 基坑开挖及降水引起的地表沉降预测[J]. 土木工程学报,2006,39(5):117-121. Shi Chenghua, Peng Limin. Ground surface settlement caused by foundation pit excavation and dewatering[J]. China Civil Engineering Journal, 2006, 39(5): 117-121. (in Chinese with English abstract)

[23] 汪益敏,陈页开,韩大建,等. 降雨入渗对边坡稳定影响的实例分析[J]. 岩石力学与工程学报,2004,23(6):920-924. Wang Yimin, Chen Yekai, Han Dajian, et al. Case study on influence of rainfall permeation on slope stability[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(6): 920-924. (in Chinese with English abstract)

[24] 陈生水,钟启明,陶建基. 土石坝溃决模拟及水流计算研究进展[J]. 水科学进展,2008,19(6):903-910. Chen Shengshui, Zhong Qiming, Tao Jianji. Development in embankment dam break simulation and water flow simulation[J]. Advances in Water Science, 2008, 19(6): 903-910. (in Chinese with English abstract)

[25] 杨蕴,吴剑锋,林锦,等. 控制海水入侵的地下水多目标模拟优化管理模型[J]. 水科学进展,2015,26(4):579-588. Yang Yun, Wu Jianfeng, Lin Jin, et al. A multi-objective simulation-optimization model constrained by the potential seawater intrusion[J]. Advances in Water Science, 2015, 26(4): 579-588. (in Chinese with English abstract)

[26] 叶为民,金麒,黄雨. 地下水污染试验研究进展[J]. 水利学报,2005,36(2):251-255. Ye Weimin, Jin Qi, Huang Yu. Review on advance in experimental study of pollution dispersion in groundwater[J]. Journal of Hydraulic Engineering, 2005, 36(2): 251-255. (in Chinese with English abstract)

[27] 黄雨,周子舟,柏炯,等. 石膏添加剂对水泥土搅拌法加固软土地基效果影响的微观试验分析[J]. 岩土工程学报,2010,32(8):1179-1183. Huang Yu, Zhou Zizhou, Bai Jiong, et al. Micro-experiments on a soft ground improved by cement-mixed soils with gypsum additive[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1179-1183. (in Chinese with English abstract)

[28] Fredlund D G,Rahardjo H. 非饱和土土力学[M]//陈仲颐译. 北京:中国建筑工业出版社,1997.

[29] Gan J K M, Fredlund D G, Rahardjo H. Determination of the shear strength parameters of unsaturated soils using the direct shear test[J]. Canadian Geotechnical Journal, 1988, 25(3): 500-510.

[30] Escario V, Saez J. The shear strength of partly saturated soils[J]. Geotechnique, 2015, 36(3): 453-456.

[31] 吴珺华,杨松. 干湿循环下膨胀土基质吸力测定及其对抗剪强度影响试验研究[J]. 岩土力学,2017,38(3):678-684. Wu Junhua, Yang Song. Experimental study of matric suction measurement and its impact on shear strength under drying-wetting cycles for expansive soils[J]. Rock and Soil Mechanics, 2017, 38(3): 678-684. (in Chinese with English abstract)

[32] 凌华,殷宗泽. 非饱和土强度随含水量的变化[J]. 岩石力学与工程学报,2007,26(7):1499-1503. Ling Hua, Yin Zongze. Variation of unsaturated soil strength with water contents[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(7): 1499-1503. (in Chinese with English abstract)

[33] 马少坤,黄茂松,范秋彦. 基于饱和土总应力强度指标的非饱和土强度理论及其应用[J]. 岩石力学与工程学报,2009,28(3):635-640. Ma Shaokun, Huang Maosong, Fan Qiuyan. Strength indexes of saturated soil and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(3): 635-640. (in Chinese with English abstract)

[34] 李广信,司韦,张其光. 非饱和土的清华弹塑性模型[J]. 岩土力学,2008,29(8):2033-2036. Li Guangxin, Si Wei, Zhang Qiguang. Tsinghua elastoplastic model for unsaturated soils[J]. Rock and Soil Mechanics, 2008, 29(8): 2033-2036. (in Chinese with English abstract)

[35] 陈俊英,刘畅,张林,等. 斥水程度对脱水土壤水分特征曲线的影响[J]. 农业工程学报,2017,33(21):188-193. Chen Junying, Liu Chang, Zhang Lin, et al. Impact of repellent levels on drainage soil water characteristic curve[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 188-193. (in Chinese with English abstract)

[36] 杨松,龚爱民,吴珺华,等. 接触角对非饱和土中基质吸力的影响[J]. 岩土力学,2015,36(3):674-678. Yang Song, Gong Aimin, Wu Junhua, et al. Effect of contact angle on matric suction of unsaturated soil[J]. Rock and Soil Mechanics, 2015, 36(3): 674-678. (in Chinese with English abstract)

[37] Harkes M P, van Paassen L A, Booster J L, et al. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J]. Ecological Engineering, 2010, 36(2): 112-117.

[38] Hallett P D, Nunan N, Douglas J T, et al. Millimeter-scale spatial variability in soil water sorptivity: Scale, surface elevation, and subcritical repellency effects[J]. Soil Science Society of America Journal, 2004, 68(2): 352-358.

[39] Imeson A C, Verstraten J M, Van-Mulligen E J, et al. The effects of fire and water repellency on infiltration and runoff under Mediterranean type forests[J]. Catena, 1992, 3/4: 345-361.

[40] Sérgio D N Lourenço, Wang GongHui , Toshitaka Kamai. Processes in model slopes made of mixtures of wettable and water repellent sand: Implications for the initiation of debris flows in dry slopes[J]. Engineering Geology, 2015, 196: 47-58.

[41] Zheng Shuang, Sérgio D N Lourenço, Peter J Cleall. Hydrologic behavior of model slopes with synthetic water repellent soils[J]. Journal of Hydrology, 2017, 554: 582-599.

[42] 吴珺华,周晓宇,林辉,等. 不同斥水剂作用下土壤斥水度测定及其变化规律[J]. 农业工程学报,2018,34(17):109-115. Wu Junhua, Zhou Xiaoyu, Lin Hui, et al. Hydrophobic degree measurement and its changes in soils modified by different hydrophobic agents[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17): 109-115. (in Chinese with English abstract)

[43] 陈俊英,张智韬,汪志农,等. 土壤斥水性影响因素及改良措施的研究进展[J]. 农业机械学报,2010,41(7):84-89. Chen Junying, Zhang Zhitao, Wang Zhinong, et al. Influencing factors and amelioration of soil water repellency[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(7): 84-89. (in Chinese with English abstract)

[44] 中华人民共和国建设部. 土工试验方法标准:GB/T50123- 1999[S]. 北京:中国标准出版社,1999.

Measurement of shear strength and its change in unsaturated soils modified by hydrophobic agent

Wu Junhua1, Lin Hui1, Zhou Xiaoyu1, Deng Yichao1, Yang Song2※

(1.,,330063,; 2.,,650201,)

In order to study how shear strength and its change in unsaturated soils modified by hydrophobic agent, sandy soils hydrophobized by dimethyldichlorosilane (DMDCS) were prepared. The hydrophobic soils with different DMDCS volume by soil mass, water content and clay content were obtained respectively. Mixtures of sandy soils (DMDCS volume by soil mass were 2 mL:100 g and 3 mL:100 g, i.e., 2% and 3%, the same below) with 3%, 5%, 7%, 11% and 13% water content were prepared respectively. Meanwhile, the mixtures of clay and sandy soils (3% DMDCS) according to the clay mass fraction of 0, 5%, 10%, 15%, 20%, 25%, 30%, 40% and 50% were prepared respectively. Then the unsaturated direct shear tests were carried out by unsaturated direct shear apparatus. Four samples in each group were prepared under the normal pressure in 100, 200, 300 and 400 kPa, respectively. The horizontal shearing ratio was 0.8 mm/min and the shearing test lasted 6 min. The results showed that: 1) The mixtures of sandy soils and DMDCS presented extreme hydrophobicity. 2) The water repelling of mixtures of clay and sandy soils was affected by both DMDCS and clay content. The water repelling of mixtures was degraded with the increasing of clay content, and improved with the increasing of DMDCS volume by soil mass. 3) The Mohr-Coulomb strength criterion could be adopted to describe the shear strength of hydrophobic sandy soils with different DMDCS and water content. With the increasing of DMDCS volume by soil mass, the shear strength index of the hydrophobic soil was decreased to different extents. The cohesive force showed a steep-drop shape from soil without DMDCS addition to that with 1% DMDCS and a slow decline up to stabilize finally. The effect of DMDCS on the cohesive force of modified sandy soils was much greater than on the internal friction angle. The hydrophobic soils’ cohesion with the increasing of water content was decreased gradually, while the internal friction angle was increased firstly and decreased finally. The water content had a much effect on the shear strength of the hydrophobic sandy soils. The shear strength index were decreased with the increasing of DMDCS volume by soil mass: the cohesion was declined rapidly from 19.6 kPa (no DMDCS) to 10.4 kPa (1% DMDCS) and slowly from 10.4 kPa (1% DMDCS) to 9.3 kPa (3% DMDCS). The internal friction angle was declined slowly from 16.2° (no DMDCS) to 11.8° (3% DMDCS). The cohesion was decreased with the increasing of water content: the cohesion was declined from 15.5 kPa (3% water content) to 7.5 kPa (13% water content) with 2% DMDCS and from 15 kPa (3% water content) to 5.2 kPa (13% water content) with 3% DMDCS respectively; the internal friction angle was increased from 12.7° (3% water content) to 15.2° (11% water content) with 2% DMDCS and from 11.7° (3% water content) to 14.6° (7% water content) with 3% DMDCS, then decreased to 13.9° (13% water content) with 2% DMDCS and 11.9° (13% water content) with 3% DMDCS respectively. 4) The Mohr-Coulomb strength criterion could also be adopted to describe the shear strength of hydrophobic mixed soils with different clay content. The cohesion was increased remarkably with the increasing of clay content. The cohesion of sandy soils without clay was 9.3 kPa, then suddenly increased to 27.2 kPa and 55.1 kPa mixed with 5% and 50% clay mass fraction, respectively. The internal friction angle was increased from 12.1° (5% clay mass fraction) to 16.2° (15% clay mass fraction), and then decreased to 9.7° (50% clay mass fraction). All the analysis could be beneficial to analyze the shear strength of hydrophobized soils and apply in engineering.

shear strength; water content; dimethyldichlorosilane; hydrophobized; unsaturated soil; direct shear test

2018-08-23

2019-02-10

国家自然科学基金资助项目(51869013、41867038);江西省自然科学基金资助项目(20181BAB216033);江西省教育厅科技项目(GJJ180530);南昌航空大学研究生创新基金资助项目(YC2018070)

吴珺华,副教授,博士,主要从事非饱和土基本性质研究。 E-mail:wjhnchu0791@126.com

杨松,副教授,博士,主要从事非饱和土基本性质研究。 E-mail:yscliff007@126.com

10.11975/j.issn.1002-6819.2019.06.015

S152.+7

A

1002-6819(2019)-06-0123-07

吴珺华,林 辉,周晓宇,邓一超,杨 松. 斥水剂作用下非饱和土壤抗剪强度测定及其变化规律[J]. 农业工程学报,2019,35(6):123-129. doi:10.11975/j.issn.1002-6819.2019.06.015 http://www.tcsae.org

Wu Junhua, Lin Hui, Zhou Xiaoyu, Deng Yichao, Yang Song. Measurement of shear strength and its change in unsaturated soils modified by hydrophobic agent[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(6): 123-129. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.06.015 http://www.tcsae.org

猜你喜欢
黏聚力摩擦角砂土
水泥土换填法在粉质砂土路基施工中的应用研究
非饱和砂土似黏聚力影响因素的实验研究
水闸砂土地基地震荷载作用下液化特征研究
不同低温温度下砂土物理力学特性试验研究
共点力平衡问题中学生科学思维能力的培养
尝试用特殊求极值的方法进行自编物理题
巧用摩擦角解决高考力学中的极值与临界问题
土体参数对改良黄土边坡变形的影响
黏聚力强度对滑面作用的差异分析
摩擦角在平衡问题中的应用