飞轮电池不对称励磁卸载轴向悬浮混合磁轴承设计

2019-09-24 11:27马益清殷生晶孙玉坤
农业工程学报 2019年15期
关键词:磁通永磁体气隙

袁 野,马益清,殷生晶,孙玉坤

飞轮电池不对称励磁卸载轴向悬浮混合磁轴承设计

袁 野,马益清,殷生晶,孙玉坤

(江苏大学电气信息工程学院,镇江 212013)

针对飞轮电池支承与传动系统集成度低、能量损耗大等问题,该文设计了一种兼顾卸载和轴向悬浮的不对称励磁混合磁轴承,该磁轴承拓扑结构由含永磁环的上定子、下定子及转子组成。分析了不同工作模式下的运行机理;综合考虑永磁退磁、最大偏心以及轴向扰动等因素对磁轴承卸载能力的影响,制定了磁轴承额定卸载力约束准则;结合永磁材料工作曲线,推导出卸载力数值模型以及退磁/最大偏心下轴向补偿力数值模型并实现了磁轴承关键结构参数设计。三维有限元分析表明,正常卸载力、退磁卸载力、偏心卸载力的有限元分析值与理论值误差分别为4%、3.7%和5.8%,验证了参数设计结果的准确性。样机试验结果表明,卸载力理论计算值与实测值的最大误差约为4%,平均误差为2%;轴向负载80 N时,转子由上定子气隙处保护磁轴承起浮,稳定悬浮后轴向单边位移约为25m,轴向负载120 N时,转子由下定子气隙处保护磁轴承起浮,稳定悬浮后轴向单边位移约为35m,所设计的磁轴承具有良好的卸载与悬浮性能。研究结果可为高集成、低损耗、高可靠性的飞轮电池系统设计提拱参考。

轴承;设计;模型;飞轮电池;不对称励磁;有限元

0 引 言

随着高强度材料、现代控制理论、磁悬浮支承技术、电力电子技术以及制造加工工艺的发展,车载飞轮电池[1-4]受到国内外众多学者的关注。相比传统蓄电池,飞轮电池具有高比功率、高比能量、大电流接受能力(再充电和再生制动时)、较长的使用时间、快速充放电等优点[5-6]。将飞轮电池作为辅助动力单元,与蓄电池配合使用,可以有效提升电动汽车动力电池的性能。

日本学者提出将磁轴承技术与飞轮电机合二为一形成车载飞轮电池用磁悬浮飞轮电机的理论。常用飞轮电机包括异步电机[7-9]、永磁电机[10-11]、开关磁阻电机[12-16]等。飞轮转子支承系统可采用超导轴承[17]、永磁轴承[18-19]、机械轴承和电磁轴承[20-22]。其中,单一的超导轴承或者永磁轴承无法实现五自由度稳定控制;机械轴承空载损耗大,大幅度降低了车载飞轮电池的待机时间和能量存储效率;电磁轴承需要通过控制绕组电流值来实现转子悬浮,当外界扰动较大时,所需悬浮功耗也相应增大,加之车载飞轮电池处于散热功能较差的真空装置中,电磁轴承产生悬浮力所带来温升降低了系统的运行效率和可靠性。混合磁轴承[23-24]融合了主动磁轴承和永磁型磁轴承的优势,通过高性能永磁材料产生偏置磁场,电磁线圈仅产生控制磁场,具有功耗低、体积紧凑、易于控制等优点。

根据磁轴承转子中磁场极性分布的不同,混合磁轴承可分为异极性结构[25]和同极性结构[26]:异极性磁轴承转子同一位置处的磁场极性交替变化,磁滞损耗高,且转速越高损耗越大;对于同极性磁轴承,磁场的极性相同,磁滞损耗小,更适合应用于真空和高速等场合。根据磁轴承功能的不同,可分为径向磁轴承[27],轴向磁轴承[28]和径向-轴向混合磁轴承。此外,对于立式飞轮电池支承与传动系统,其系统除轴向悬浮磁轴承,径向磁轴承和飞轮电机之外,需通过卸载轴承来实现轴系重量卸载[29-31]。江苏大学孙玉坤团队提出了一种单绕组磁悬浮飞轮电池结构,通过单绕组磁悬浮电机与多个磁悬浮轴承配合,实现了悬浮/发电/电动柔性一体化运行;朱熀秋团队提出了一种新型磁悬浮异步飞轮电机系统,并进行了鲁棒强抗扰控制研究。上述飞轮系统虽然实现了转子五自由度悬浮运行,但其卸载轴承和轴向悬浮轴承均为独立部件,集成度有待进一步加强。

本文提出了一种不对称励磁卸载轴向悬浮混合磁轴承(unloading axial suspension hybrid magnetic bearing,UAHMB)。首先介绍了所提磁轴承的拓扑结构,并分析了不同工作模式下的运行机理;考虑永磁退磁、最大偏心以及轴向扰动等因素对磁轴承性能的影响,提出了磁轴承设计约束准则;推导出卸载力数值模型以及退磁/最大偏心下轴向补偿力数值模型,在此基础上,给出了关键参数设计理论,并通过三维有限元验证了设计理论的正确性。最后结合一台样机对所设计的磁轴承进行了卸载能力与悬浮性能试验。

1 UAHMB结构与工作原理

1.1 UAHMB基本结构

UAHMB结构如图1所示。主要由上定子、下定子、永磁环、上定子绕组、下定子绕组及转子组成。上定子由环形内磁极、永磁环、环形外磁极和环形筒连接而成,下定子由环形内磁极、环形外磁极和环形筒连接而成。

图1 卸载轴向悬浮混合磁轴承结构

上定子中永磁环(permanent magnet,PM)径向充磁,且其轴向长度与环形筒轴向长度相等,下定子无永磁环。圆盘型转子嵌套与转轴上,转子与上定子/下定子之间均留有工作气隙;环形外磁极与环形内磁极之间开有轴向的圆形槽,槽内绕制有控制线圈。

1.2 UAHMB工作原理

UAHMB运行状态可以分为:正常卸载、永磁退磁/卸载和轴向扰动下动态运行。在不同运行状态下,其产生卸载力或轴向悬浮力的原理也相应改变。表1为磁轴承不同工作状态下永磁体,上定子和下定子工作模式,图2为不同工作模型下磁路图。

表1 UAHMB 工作原理

注:fm为径向充磁的永磁环所产生的磁通;fdm为永磁体退磁时气隙磁通;fc为控制磁通;fuc为下定子绕组产生的磁通;fm*为气隙磁通;N、S表示磁极。

图2a为无扰动时UAHMB正常卸载磁路图。径向充磁的永磁环所产生的磁通m经过上定子的外磁极、气隙、转子、内磁极形成闭合回路,形成沿轴系向上的悬浮力,实现卸载功能。

图2b为无扰动下永磁体退磁时UAHMB磁路图。dm为永磁体退磁时气隙磁通,与上定子绕组产生控制磁通c相叠加,实现转子轴向卸载。

图2c为转子向下偏心时磁路图。气隙磁通为m*,与上定子绕组产生磁通c相叠加,实现转子轴向卸载。

图2d为转子向上偏心时磁路图。此时气隙磁通为m*,可通过控制上定子绕组磁通方向,形成合成磁通(m*−uc);若此时上定子合成磁通仍大于轴系向下合力,则导通下定子绕组,产生磁通uc,形成沿轴系向下的合力。

2 UAHMB结构参数与设计准则

2.1 UAHMB的关键结构参数

UAHMB的关键结构参数如图3所示。

2.2 UAHMB设计准则

设上定子、下定子和转子均选用同类型的软磁材料,且该软磁材料的磁化曲线的线性区间为[min,max];静态下,永磁体产生的的气隙磁通密度为pm,永磁体退磁时产生的气隙磁通密度为pm*;轴向负载加大或转子向下偏心时,上定子绕组所产生的控制气隙磁通密度为uc,其最大值为ucmax;转子向上偏心时,下定子绕组产生的控制气隙磁通密度为dc,其最大值为dcmax。一般有:

考虑永磁体高温退磁以及转子轴向偏心,对UAHMB不同模式下产生的轴向力做如下定义:

1)永磁体产生的卸载力为pm*,转子无偏心时(静态)卸载力为pm0,向下最大偏心时卸载力为pmin,向上最大偏心时卸载力为pmax。

注:Du1为上定子内极内径,Du2为内极外径;Du3表示外极内径,Du4为外极外径。huz为轴向长度,Dd1为下定子内极内径;Dd2为内极外径,Dd3为外极内径。Dd4为外极外径,hdz为轴向长度;gu1为上定子内极与转子之间气隙,gu2为上定子外极与转子之间气隙。gd1为下定子内极与转子之间气隙,gd2为下定子外极与转子之间气隙;Lpm为永磁环的充磁长度,hz为永磁环轴向高度。D2pm为永磁环内径,D3pm为永磁环外径,mm。

2)永磁体高温退磁时,卸载力为dpm。

综上,UAHMB设计准则应满足如下关系:

2.3 上定子与永磁体结构参数设计

UAHMB处于静态卸载时,卸载力为

定义mc为永磁体工作磁动势,有

定义u1为气隙1处的气隙磁阻,u2为气隙2处的气隙磁阻,u1为上定子内极气隙1处的截面积,u2为上定子外极气隙2处的截面积,可得

其中pm为永磁体充磁厚度,pm为永磁体工作点磁场强度。永磁体漏磁系数可表示为

其中pmu为环形永磁体上端部漏磁磁阻,pmd为永磁体下端部漏磁磁阻。

2.4 考虑退磁和偏心约束的上定子绕组计算

永磁体高温退磁和沿轴系向下偏心均会导致转子悬浮力发生改变。

本小节着重分析钕铁硼永磁材料的热稳定性对UAHMB卸载力的影响,永磁体-曲线受温度影响变化如图4所示[32]。

注:Br为永磁体常温下剩余磁通密度;Hc为矫顽力;Bpm为永磁体工作点磁通密度;hpm为永磁体工作点磁场强度;Br*为永磁体退磁时剩余磁通密度;Hc*为永磁体退磁时矫顽力,Bpm*为永磁体工作点磁通密度,hpm*永磁体退磁时工作点磁场强度,a为负载曲线与h轴夹角。

由图4a有

则永磁体退磁模式下卸载力数值解析模型为

式中为永磁体工作温度,0为室内温度,K;t为永磁体的温度系数,%K。

永磁环通过上定子磁路产生的卸载力为

根据图2d所示关系,UAHMB关于轴向气隙的卸载力数值解析模型为

其中0为转子在平衡位置时气隙长度,max为最大轴向偏心长度,mm。

2.4.3 上定子绕组计算

上定子绕组产生的最大轴向悬浮力umax为

定义uu为上定子绕组最大安匝数,得上定子绕组参数

约束条件为

2.5 下定子及其绕组计算

根据图2d给出的运行机理以及式(2)设计准则,当沿轴系向上最大扰动力df=pm时,下定子绕组需提供的轴向力dc应满足

得到以气隙长度为自变量的上定子绕组在转子沿轴系向上偏心时的轴向力表达式为

同样,永磁体在转子沿轴系向上偏心时以气隙长度为自变量的轴向力表达式为

进一步的,有

定义0dcmax为转子无偏心,则下定子绕组参数可表示为

约束条件为

2.6 设计结果

设计目标:气隙偏置磁通密度0.6 T,卸载力100 N,气隙0.5 mm。永磁体剩余磁通密度1.2 T,矫顽力850 kA/m,转子最大偏心为0.2 mm。根据前述理论分析和设计准则,各结构参数及设计结果如表2所示。

表2 UAHMB的关键结构参数

3 仿真分析

结合UAHMB三维有限元模型,分析UAHMB不同模式下电磁特性,验证本文给出的设计方法的正确性与合理性。具体验证指标包括:工作磁通密度,静态卸载力,退磁轴向力及相应气隙磁通密度,最大偏心处卸载力及相应气隙磁通密度,上定子绕组轴向力,下定子绕组轴向力及气隙磁通密度等。

3.1 参数设计结果仿真验证

3.1.1 永磁体与上定子参数设计验证

图5为永磁体正常卸载时,上定子磁通密度以及气隙磁通密度分布。由图可知,当UAHMB正常运行于卸载模式时,上定子气隙磁通密度平均值约为0.605 T,与理论值pm=0.6 T相的相对误差为0.08%,符合设计要求,卸载力pm为104 N,与理论值100 N的相对误差为4%,在允许误差范围之内。

图5 卸载模式时上定子磁通密度与气隙磁通密度

图6为永磁体退磁时上定子磁通密度以及气隙磁通密度分布。如图6所示,当永磁体退磁时,上定子气隙磁通密度平均值约为0.53 T,与理论值dpm=0.54 T相的相对误差为1.85%,卸载力为78 N,与理论值dpm=81 N的相对误差为3.7%,均满足设计要求。

图6 退磁时上定子磁通密度与气隙磁通密度

图7为转子轴系向下最大偏心时上定子磁通密度以及气隙磁通密度分布。如图7所示,当轴系向下最大偏心0.2 mm时,此时气隙为0.7 mm,通过有限元分析以及傅里叶变化得到上定子极气隙磁通密度基波平均值约为0.515 T,与式(2)计算所得pmin理论值0.5 T相符合;此外,有限元分析得卸载力pmin为65 N,与理论值69 N相对误差为5.8%,在允许误差范围之内。

图7 向下最大偏心时上定子磁通密度与气隙磁通密度

图8给出了轴系向下最大偏心时,上定子绕组最大绕组磁动势模式下的磁通密度图。

图8 上定子绕组最大安匝数下磁通密度

由图8可知,当上定子气隙为0.7 mm,上定子绕组工作与最大磁动势条件下时,通过有限元分析以及傅里叶变化得到上定子气隙合成磁通密度(ucmax+pm)为0.65 T,满足设计约束条件;此外,上定子绕组在轴向向下最大偏心时,理论上上定子绕组在最大磁动势下应提供不小于31 N轴向力,轴向合力不小于100 N,有限元分析计算得此时轴向力合力为110 N,满足设计要求。

3.1.2 下定子参数设计验证

当转子沿轴系向上偏心时,可通过控制上定子绕组磁动势与下定子绕组磁动势,形成沿轴系向下的合力。因此,下定子最大抗轴向扰动力100 N,即df=100 N。图9为转子在平衡位置与轴系向上最大偏心区间内,永磁卸载力的数值变化以及上定子绕组最大磁动势下轴向力的数值变化。

由图9a可知,当转子从平衡位置沿轴系向上偏心时,永磁体提供的悬浮力递增,0.3 mm气隙处最大值约为160 N,0.5 mm气隙处最小值约为100 N;上定子绕组最大磁动势下,可提供的轴向力也随着气隙的变小而递增,0.5 mm气隙处最小值约为24 N,0.3 mm气隙处最大值约为78 N。由图9b可知,永磁体卸载力与上定子轴向力差值最约为84 N,对应上定子气隙0.3~0.35 mm,下定子气隙0.7~0.65 mm。因此,下定子绕组需提供的轴向力应大于84 N,本文取100 N。

图10为下定子在气隙为0.7,0.65,0.5 mm的磁通密度以及相应的气隙磁通密度分布。如图10a所示,当下定子气隙为0.7 mm,绕组提供440 AT磁动势式,有限元分析得到下定子气隙磁通密度基波平均值约为0.41 T,理论值1dcmax为0.4 T,此时轴向力100 N,满足设计要求。

a. 永磁卸载力与上定子绕组轴向力a. PM unloading force and upper stator axial forceb. 永磁体卸载力与上定子轴向力差值b. Difference between PM unloading force and upper stator axial force

注:gd1为下定子气隙,NdId为磁动势。 Note: gd1 is air gap, NdId is magneto-dynamic potential.

如图10b所示当气隙为0.65 mm,下定子绕组提供360 AT磁动势时,定子气隙磁通密度基波平均值约为0.42 T,此时有限元分析得轴向力100 N;如图10c所示,当气隙为0.5 mm,下定子绕组提供420 AT磁动势时,下定子气隙磁通密度基波平均值约为0.535 T,小于气隙磁通密度饱和限定值1.2 T,满足设计要求。

3.2 卸载力与悬浮验证

为了进一步验证理论分析的正确性,根据理论设计结果制造了一台样机。图11为样机实物,定子与转子采用电工纯铁,永磁体材料为钕铁硼,径向四自由度采用机械结构限制。

图11 样机

通过调节螺母实现轴向上定子气隙与下定子气隙变化,变化值通过电涡流位移传感器检测,进而测量出卸载力大小;通过改变轴向负载重量,测得UAHMB稳态悬浮位移波形。图12为不同气隙值下,卸载力理论计算值与实测值。两者数值最大误差约为4%,平均误差为2%。验证了UAHMB卸载力设计的有效性。

图12 卸载力实测值

图13为轴向负载80 和120 N时,转子位移的波形图。由图13a可知,轴向负载80 N时,转子由上定子气隙处保护磁轴承起浮,稳定悬浮后轴向单边位移约为25m;由图13b可知,轴向负载120 N时,转子由下定子气隙处保护磁轴承起浮,稳定悬浮后轴向单边位移约为35m;可实现轴向稳定悬浮。

图13 不同负载的转子轴向位移

4 结 论

为提高飞轮电池的集成性与系统效率,提出了一种卸载轴向悬浮混合磁轴承并给出其关键参数设计理论与方法。得到以下结论:

1)所提可以运行在多种工作模式:卸载模式,轴向负载加大/永磁退磁模式,上扰动/下扰动自平衡控制模式,实现了卸载与轴向悬浮一体化。

2)推导出永磁卸载力关键转子偏心位置的数值解析模型,推导出永磁体退磁模式下卸载力数值解析模型以及绕组磁动势产生的轴向力数学模型。通过有限元分析验证了理论计算的正确性。

3)结合磁轴承自身运行机理,制定了设计准则,给出了关键结构参数设计方法以及约束条件。通过有限元与实验验证了设计方法合理性。

4)本文给出的卸载力/轴向力数学模型以及参数设计方法,可以推广至不同类型的混合磁轴承参数设计中,为磁轴承悬浮力建模以及控制提供了理论基础。

[1] Peng C, Sun J, Song X, et al. Frequency-varying current harmonics for active magnetic bearing via multiple resonant controllers[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1): 517-526.

[2] Yuan Ye, Sun Yukun, Huang Yonghong. Radial force dynamic current compensation method of single winding bearingless flywheel motor[J]. IET Power Electronics, 2015, 8(7): 1224-1229.

[3] Itani K, De Bernardinis A, Khatir Z, et al. Integration of different modules of an electric vehicle powered by a battery- flywheel storage system during traction operation[C]// Multidisciplinary Conference on Engineering Technology (IMCET), IEEE International. IEEE, 2016: 126-131.

[4] Yuan Ye, Sun Yukun, Huang Yonghong. Accurate mathematical model of bearingless flywheel motor based on Maxwell tensor method[J]. IET Electronics Letters, 2016, 52(11): 950-951.

[5] Yuan Ye, Sun Yukun, Huang Yonghong. Design and analysis of bearingless flywheel motor specially for flywheel energy storage[J]. IET Electronics Letters, 2016, 52(1): 66-68.

[6] Faraji F, Majazi A, Al-Haddad K. A comprehensive review of flywheel energy storage system technology[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 477-490.

[7] Ooshima M, Kitazawa S, Chiba A, et al. Design and analyses of a coreless-stator-type bearingless motor/generator for clean energy generation and storage systems[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3461-3463.

[8] Ooshima M, Kobayashi S, Tanaka H. Magnetic suspension performance of a bearingless motor/generator for flywheel energy storage systems[C]//Power and Energy Society General Meeting, 2010 IEEE: 1—4.

[9] Severson E, Nilssen R, Undeland T, et al. Suspension force model for bearingless ac homopolar machines designed for flywheel energy storage[C]//GCC Conference and Exhibition (GCC), 2013 7th IEEE. IEEE, 2013: 274-279.

[10] Wang G, Wang P, Wang X. Analyze of permanent magnet loss of high speed permanent magnet synchronous motor for flywheel energy storage system[C]//Applied Superconductivity and Electromagnetic Devices (ASEMD), 2015 IEEE International Conference on. IEEE, 2015: 549-550.

[11] Liu K, Fu X, Lin M, et al. AC copper losses analysis of the ironless brushless DC motor used in a flywheel energy storage system[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(7): 1-5.

[12] Cardenas R, Pena R, Perez M, et al. Power smoothing using a switched reluctance machine driving a flywheel[J]. IEEE Transactions on Energy Conversion, 2006, 21(1): 294-295.

[13] Yuan Ye, Sun Yukun, Huang Yonghong. Radial force dynamic current compensation method of single winding bearingless flywheel motor[J]. IET Power Electronics, 2015, 8(7): 1224-1229.

[14] Yuan Ye, Sun Yukun, Huang Yonghong. Accurate mathematical model of bearingless flywheel motor based on Maxwell tensor method[J]. Electronics Letters, 2016, 52(11): 950-951.

[15] Yuan Ye, Sun Yukun, Huang Yonghong. Design and analysis of bearingless flywheel motor specially for flywheel energy storage[J]. Electronics Letters, 2016, 52(1): 66-68.

[16] Yuan Ye, Sun Yukun, Xiang Qianwen, et al. Model-free adaptive control for three degree-of-freedom hybrid magnetic bearings[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(12): 2035-2045.

[17] Kohari Z, Nadudvari Z, Szlama L, et al. Test results of a compact disk-type motor/generator unit with superconducting bearings for flywheel energy storage systems with ultra-low idling losses[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 1497-1501.

[18] Bachovchin K D, Hoburg J F, Post R F. Stable levitation of a passive magnetic bearing[J]. Magnetics, IEEE Transactions on, 2013, 49(1): 609-617.

[19] 袁野,孙玉坤,张维煜,等. 新型飞轮储能备用轴承磁力数值分析[J]. 电机与控制学报,2016,20(7):95-101.

Yuan Ye Sun Yukun Zhang Weiyu. et al. Magnetic force numerical analysis of auxiliary bearings in optimized flywheel storage system[J] Electric Machines and Control, 2016, 20(7): 95-101. (in Chinese with English abstract)

[20] Bai J, Zhang X, Wang L. A flywheel energy storage system with active magnetic bearings[J]. Energy Procedia, 2012, 16: 1124-1128.

[21] Pichot M A, Kajs J P, Murphy B R, et al. Active magnetic bearings for energy storage systems for combat vehicles[J]. Magnetics, IEEE Transactions on, 2001, 37(1): 318-323.

[22] Su Z, Wang D, Chen J, et al. Improving operational performance of magnetically suspended flywheel with pm-biased magnetic bearings using adaptive resonant controller and nonlinear compensation method[J]. IEEE Transactions on Magnetics, 2016, 52(7): 1-4.

[23] Peng C, Sun J, Song X, et al. Frequency-varying current harmonics for active magnetic bearing via multiple resonant controllers[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1): 517-526.

[24] Yu Zhiqiang, Zhang Guomin, Qiu Qingquan, et al. Development status of magnetic levitation flywheel energy storage system based on high-temperature superconductor[J]. Transactions of China Electrotechnical Society, 2013, 28(12): 109-118.

[25] 袁野,孙玉坤,黄永红,等. 磁轴承变饱和柔性变结构控制[J]. 控制理论与应用,2015,32(12):1627-1634.

Yuan Ye, Sun Yukun, Huang Yonghong, et al. Variable saturation soft variable structure control of magnetic bearing[J]. Control Theory and Applications, 2015, 32(12): 1627-1634. (in Chinese with English abstract)

[26] 房建成,孙津济. 一种磁悬浮飞轮用新型永磁偏置径向磁轴承[J]. 北京航空航天大学学报,2006(11):1304-1307.

Fang Jiancheng, Sun Jingji. New permanent magnet biased radial magnetic bearing in magnetic suspending flywheel application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006(11): 1304-1307. (in Chinese with English abstract)

[27] 鞠金涛,朱熀秋,张维煜. 逆变器驱动对三极径向–轴向混合磁轴承径向承载力的影响[J].中国电机工程学报, 2016, 36(11): 3085-3091.

Ju Jintao, Zhu Huangqiu, Zhang Weiyu. The effects of inverter-fed on radial carrying capacity of three-pole radial-axial hybrid magnetic bearings[J]. Proceedings of the Chinese Society for Electrical Engineering, 2016, 36(11): 3085-3091. (in Chinese with English abstract)

[28] 吴磊涛,王东,苏振中,等. 考虑定子外壳漏磁的同极式永磁偏置径向磁轴承磁路模型[J]. 电工技术学报,2017,32(11):118-125.

Wu Leitao, Wang Dong, Su Zhenzhong, et al. Leakage magnetic field and precise magnetic circuit model of the permanent magnetic biased radial magnetic bearing[J]. Transactions of China Electrotechnical Society, 2017, 32(11): 118-125. (in Chinese with English abstract)

[29] 王抗,王东,吴磊涛,等. 基于解析模型的多气隙永磁偏置轴向磁轴承电磁优化设计[J]. 电机与控制应用,2016,43(3):1-7.

Wang Kang, Wang Dong, Wu Leitao, et al. Optimal design of permanent magnet biased axial magnetic bearing with multiple air gaps based on analytical model[J]. Motor and Control Application, 2016, 43(3): 1-7. (in Chinese with English abstract)

[30] 李奕良,戴兴建,张小章. 储能飞轮永磁卸载设计及试验[J]. 清华大学学报:自然科学版,2008,48(8):1268-1271.

Li Yiliang, Dai Xingjian, Zhang Xiaozhang. Design and testing of a permanent magnetic bearing for an energy storage flywheel[J]. Journal of Tsinghua University: Natural Science Edition, 2008, 48(8): 1268-1271. (in Chinese with English abstract)

[31] 田录林,李言,田琦,等. 轴向磁化的双环永磁轴承轴向磁力研究[J]. 中国电机工程学报,2007,27(36):41-45.

Tian Lulin, Li Yan, Tian Qi, et al. Research on the axial magnetic force of axially magnetized bi-annular-shaped permanent magnetic bearings[J]. Proceedings of The Chinese Society for Electrical Engineering, 2007, 27(36): 41-45. (in Chinese with English abstract)

[32] 林岩. 钕铁硼永磁电机防高温失磁技术的研究[D]. 沈阳:沈阳工业大学, 2006.

Lin Yan. Research on Technology of Demagnetization Proof of Temperature Permanent Magnet Machine on High Technology[D]. Shenyang: Shenyang University of Technology, 2006. (in Chinese with English abstract)

Design of axially suspended hybrid magnetic bearing with asymmetric excitation and unloading for flywheel battery

Yuan Ye, Ma Yiqing, Yin Shengjing, Sun Yukun

(,,212013,)

Bearingless flywheel battery has many advantages, such as high specific power, high specific energy, high current receiving capacity (recharge and regenerative braking), long service life, fast charge and discharge, and it is considered to be the most competitive auxiliary batteries for electric vehicle. However, there are some problems in bearingless flywheel motors and some magnetic bearings in bearingless flywheel battery systems, such as low integration, large energy loss and low reliability. Aiming at above problems, an axially suspended hybrid magnetic bearing with asymmetric excitation and unloading which consists a lower stator, a upper stator with permanent magnet ring and a rotor is proposed in this paper. First of all, the mechanical structure of the axially suspended hybrid magnetic bearing with asymmetric excitation and unloading is introduced, and the different operating mechanisms under the conditions of unloading, demagnetization, down disturbance and upward disturbance are discussed. The design criteria is set according to the operating mechanisms under different working conditions. According to the design criteria and the working curve of rare earth permanent magnet materials, the numerical model of unloading force and the axial compensation under demagnetization/maximum eccentricity are deduced. Then, the structural parameters of upper stator and permanent magnet are designed, and the windings of the upper stator and lower stator are calculated considering the constraint conditions of demagnetization and eccentricity. Based on this, three-dimensional finite element model is established. Simulation results show that the flux density is about 0.605 T between upper stator and air gap under unloading mode which verifies the validity of the design method for permanent magnet and upper stator parameters. The suspension force of finite analysis is about 100 N and the relative error with theoretical suspension force value (104 N) is 4%. When working under the demagnetization mode, the flux density is about 0.53 T between upper stator and air gap which approximately equals to the theoretical value(0.54 T). The suspension force of finite analysis is about 78 N and the relative error with the theoretical suspension force value(81N) is 3.7%. When the maximum downward eccentricity is 0.2 mm, the flux density is 0.515 T which approximately equals to the 0.5 T of theoretical value, the suspension force of finite analysis is about 65 N and the relative error with the theoretical suspension force value(69 N) is 5.8%. When the maximum upward eccentricity is 0.2 mm, the flux density is 0.65 T and the suspension force of finite analysis is about 110 N. Finally, in order to further verify the correctness of theoretical analysis, a prototype is manufactured according to the design results. The results of prototype test show that the maximum error between theoretical calculation value and measured value of unloading force is about 4%, and the average error is 2%, the rotor radial displacement is about 25m when the axial load is 80 N, the rotor radial displacement is about 35m when the axial load is 120 N. The results indicate the proposed magnetic bearing has a good unloading and suspension performance of the magnetic bearing, which provides a new idea and method for the design of high integration, low loss and high reliability flywheel battery system.

bearings; design; models; flywheel battery; asymmetric excitation; finite element

10.11975/j.issn.1002-6819.2019.15.008

TG156

A

1002-6819(2019)-15-0054-09

2018-12-27

2019-06-17

国家自然科学基金项目(51707082,51877101);江苏省自然科学基金项目(BK20170546,BK20150524);江苏高校优势学科建设工程资助项目

袁 野,博士,讲师,研究方向为飞轮储能系统无轴承化设计与优化,先进复合储能系统能量管理。Email:1000050003@ujs.edu.cn

袁 野,马益清,殷生晶,孙玉坤. 飞轮电池不对称励磁卸载轴向悬浮混合磁轴承设计[J]. 农业工程学报,2019,35(15):54-62. doi:10.11975/j.issn.1002-6819.2019.15.008 http://www.tcsae.org

Yuan Ye, Ma Yiqing, Yin Shengjing, Sun Yukun. Design of axially suspended hybrid magnetic bearing with asymmetric excitation and unloading for flywheel battery[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(15): 54-62. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.15.008 http://www.tcsae.org

猜你喜欢
磁通永磁体气隙
新型轴向磁通永磁辅助磁阻电机研究
气隙大小对电机电磁振动的影响分析
轴向磁通电励磁双凸极电机及容错运行控制策略
新型轴向磁通转子错角斜极SRM研究
基于田口法的内置式双层永磁体转子结构的设计与优化
极间永磁体对爪极永磁电机性能影响仿真分析
轴承试验机磁性离合机构的设计分析*
专利名称:电机轴端旋转永磁体角度发送装置
非均匀气隙结构对自起动永磁同步电动机性能的影响
基于Halbach阵列磁钢的PMSM气隙磁密波形优化