虾稻共作灌溉定额确定方法研究

2019-09-24 11:28刘路广关洪林潘少斌崔远来杨小伟
农业工程学报 2019年15期
关键词:虾稻水层定额

刘路广,吴 瑕,关洪林,潘少斌,崔远来,董 苇,杨小伟,罗 强

虾稻共作灌溉定额确定方法研究

刘路广1,2,吴 瑕1,2,关洪林1,2,潘少斌1,2,崔远来3,董 苇1,2,杨小伟1,2,罗 强3

(1. 湖北省水利水电科学研究院,武汉 430070;2. 湖北省节水研究中心,武汉 430070;3. 武汉大学水资源与水电工程科学国家重点实验室,武汉 430072)

近年来,中国长江中下游流域大面积发展了虾稻共作适水农业,该种养模式改变了田块结构及用水模式,其灌溉定额计算有别于普通农作物且具有一定复杂性,目前还未见相关研究报道。该文在实地调研的基础上,根据虾稻共作田块结构与用水特点,将1个周年划分为水稻非生育期阶段、水稻生育期虾稻分养阶段、水稻生育期虾稻共养阶段3个阶段,基于水量平衡原理,提出虾稻共作灌溉定额确定方法。以湖北省潜江市为例,通过资料搜集和计算参数确定,采用该文提出的计算方法对虾稻共作灌溉定额进行了计算,虾稻共作灌溉定额多年平均12 945 m3/hm2。该研究成果为虾稻共作灌溉定额提供了理论依据,对指导虾稻共作灌溉用水及水资源管理具有重要意义。

灌溉;降雨;蒸发蒸腾;虾稻共作;水量平衡原理;确定方法

0 引 言

虾稻共作是将种植业与养殖业有机结合的一种新型生态农业模式,是传统农业与现代科技相结合的产物,具有潜在生态、经济和社会效益[1-4]。由于虾稻共作种养模式稳粮增收成效显著,该种养模式在中国长江中下游流域湖北、湖南、江西、安徽、江苏等省份得到了推广应用[5-7]。根据全国水产技术推广总站2018年发布的中国小龙虾产业发展报告,2017年全国虾稻共作面积达到了567 khm2。目前,国内外在虾稻共作种养技术方面开展了许多研究工作[8-12],取得了一些研究成果。增产增质方面,虾稻共作可增加农民收入,提高水稻品质[13],部分研究表明还可促进水稻增产[9-10,14];土壤肥力方面,可改善土壤结构,有助于保持土壤肥力[14-17];生物多样性方面,对杂草具有控制作用[18],显著影响水体浮游植物和土壤微生物结构[19-21]。在科学研究及推广应用过程中,在田块结构设计、水肥管理等种养技术方面总结了大量经验[22-24]。

由于虾稻共作改变了田块结构和用水模式[25-26],水平衡要素及计算参数发生了变化,进而影响了灌溉定额及其计算方法,与一般农作物灌溉定额计算相比[27-29],具有一定复杂性。灌溉定额是节约用水和水资源管理的基础性工作[30],而目前虾稻共作灌溉定额计算方法未见相关研究报道,因此如何计算虾稻共作灌溉定额成为当前亟待解决的问题。根据研究现状及存在问题,开展实地调研,系统科学提出虾稻共作灌溉定额计算方法,对指导虾稻灌溉用水及水资源管理具有重要意义。

1 实地调研虾稻共作模式

2018年3月,对虾稻共作模式发源地湖北省潜江市熊口镇华山虾稻共作基地及农户进行了实地调研,摸清了虾稻共作田块结构(稻田与虾沟尺寸)、龙虾养殖要点、水稻生育期、水层控制标准、水肥管理经验等。虾稻共作一般在稻田四周开挖虾沟,虾沟与稻田平面布置示意图见图1。

注:L1为虾稻共作田块总长度,m;L2为稻田长度,m;B1为虾稻共作田块总宽度,m;B2为稻田宽度,m。

根据虾稻共作模式种养特点,可将1个周年划分为3个阶段:水稻非生育期阶段、水稻生育期虾稻分养阶段、水稻生育期虾稻共养阶段。水稻非生育期阶段指水稻种植前和收割后的一段时期,该阶段小龙虾可在虾沟及稻田内活动;水稻生育期虾稻分养阶段主要是指水稻生长前期和后期(如返青期、分蘖期、乳熟期和黄熟期),小龙虾仅在虾沟内活动;水稻生育期虾稻共养阶段指水稻生长中期(拔节孕穗期和抽穗开花期),小龙虾可在虾沟及稻田内活动。

2 虾稻共作灌溉定额计算方法

2.1 水稻非生育期阶段灌溉定额

水稻非生育期阶段水层控制标准见图2,该阶段虾沟与稻田水体连成一体,因此,将虾沟和稻田作为1个计算单元,根据水量平衡原理,水量平衡方程可概化为

h

虾,

=

h

虾,

+

P

有效

+

m

E

S

(1)

式中0为水稻非生育期阶段灌溉定额,m3/hm2。

注:虾,蓄为水稻非生育期阶段降雨后最大蓄水水位,mm;虾,上为水稻非生育期阶段适宜水层水位上限,mm;虾,下为水稻非生育期阶段适宜水层水位下限,mm。

Note:虾,蓄is max water level after rainfall in non-growth stage of rice, mm;虾,上is upper limit of suitable water level in non-growth stage of rice, mm;虾,下is lower limit of suitable water level in non-growth stage of rice, mm.

图2 水稻非生育期阶段水层控制标准示意图

Fig.2 Water layer control standard in non-growth stage of rice

2.2 水稻生育期虾稻分养阶段灌溉定额

水稻生育期虾稻分养阶段水层控制标准见图3所示。虾沟和稻田分别基于水量平衡原理进行计算。

虾沟水量平衡计算方程可概化为

h

沟,

=

h

沟,

+

P

有效

+

m

E

S

(3)

式中沟,末为该阶段计算时段末虾沟水层水位,mm;沟,初为该阶段计算时段初虾沟水层水位,mm;沟为该阶段该计算时段虾沟灌水定额,mm。

注:h稻,蓄为水稻生育期虾稻分养阶段稻田最大蓄雨水位,mm;h稻,上为水稻生育期虾稻分养阶段稻田适宜水层上限水位,mm;h稻,下为水稻生育期虾稻分养阶段稻田适宜水层下限水位,mm;h沟,蓄为水稻生育期虾稻分养阶段虾沟最大蓄雨水位,mm;h沟,上、B上分别为水稻生育期虾稻分养阶段虾沟适宜水层上限水位及对应宽度,m;h沟,下、B下分别为水稻生育期虾稻分养阶段虾沟适宜水层下限水位及对应宽度,m。

若虾沟水层水位沟,末降至虾沟适宜水层下限水位沟,下,且无降雨,则需进行灌水(补水)至虾沟适宜水层上限水位沟,上。虾沟第次灌水的补水量记为W,第次灌水的灌水定额记为沟,j,第次灌水前的虾沟水层水位沟,末记为沟,j(=1,2,…,,表示该阶段的虾沟灌水总次数)。若虾沟水层水位沟,末大于降雨后虾沟最大蓄水水位沟,蓄,则需进行排水至沟,蓄。第次虾沟补水量j计算公式为

Wj

=0.5(

B

+

B

)(

h

沟,

h

沟,j

)×2(

L

1

+

B

2

)×10

-3

(4)

式中1为虾稻共作田块总长度,对于环形虾沟即稻田长度与2倍虾沟宽度之和,m。

稻田水量平衡计算方程可概化为

h

稻,

=

h

稻,

+

P

有效

+

m

−ET

C

S

(5)

式中稻,末为该阶段计算时段末稻田水层水位,mm;稻,初为该阶段计算时段初稻田水层水位,mm;稻为该阶段该计算时段稻田灌水定额,mm;ETC为水稻蒸发蒸腾量,mm。

若稻田水层水位稻,末降至稻田适宜水层下限稻,下,且无降雨,则需进行补水至稻田适宜水层上限稻,上。稻田第次灌水的灌水量记为,第次灌水的灌水定额稻记为稻,k,第次灌水前的稻田水层水位稻,末记为稻,k,其中=1,2,…,(表示该阶段的稻田灌水总次数)。若稻田水层水位稻,末大于降雨后稻田最大蓄水水位稻,蓄,则需进行排水至稻,蓄。第次稻田灌水量W

Wk

=10

-3

m

稻,k

A

=10

-3

A

(

h

稻,

h

稻,k

)

=10

-3

B

2

·

L

2

(

h

稻,

h

稻,k

) (6)

式中W为稻田灌水量,m3;稻为稻田面积,m2。

水稻生育期虾稻分养阶段灌溉定额

2.3 水稻生育期虾稻共养阶段灌溉定额

水稻生育期虾稻共养阶段水层控制标准见图4所示。该阶段虾沟和稻田水体连为一体,将虾沟和稻田作为1个计算单元,其水量平衡方程为

式中2为水稻生育期虾稻共养阶段灌溉定额,m3/hm2。

注:虾稻,蓄为水稻生育期虾稻共养阶段稻田最大蓄雨水位,mm;虾稻,上为水稻生育期虾稻共养阶段适宜水层上限水位,mm;虾稻,下为水稻生育期虾稻共养阶段适宜水层下限水位,mm。

Note:虾稻,蓄is max water level after rainfall at crayfish-rice culture stage at growth stage of rice, mm;虾稻,上is upper limit of suitable water level at crayfish-rice culture stage at growth stage of rice, mm;虾稻,下is lower limit of suitable water level at crayfish-rice culture stage at growth stage of rice, mm.

图4 水稻生育期虾稻共养阶段水层控制标准示意图

Fig.4 Water layer control standard of crayfish-rice culture stage at growth stage of rice

2.4 水质换水定额

因水质问题,部分区域在虾稻共作生长期间还需要进行换水,换水定额3可根据水质情况、试验观测及经验值进行取值。

2.5 虾稻共作灌溉定额

将水稻非生育期阶段、水稻生育期虾稻分养阶段、水稻生育期虾稻共养阶段的灌溉定额与水质换水定额相加,得到了虾稻共作灌溉定额(m3/hm2),具体见式(10)。虾稻共作灌溉定额计算方法中均采用水位值,水位为相对于虾沟底部的水位值,控制水层标准也是相对于虾沟底部的水位值。

=0+1+2+3(10)

3 公式应用实例

3.1 研究区概况

据统计,2017年湖北省渔稻综合种养(主要为虾稻共作)面积达到330 khm2,位居全国首位。潜江市为虾稻共作发源地,其虾稻共作面积达到了46.7 khm2以上。本研究以湖北省潜江市为例,根据实地调研与相关技术规程[5],确定了相关计算参数,并对虾稻共作灌溉定额进行了计算。

3.2 数据来源及计算过程

1)计算单元结构尺寸

稻田四周开挖虾沟,虾稻共作计算单元长度1=260 m,虾稻共作计算单元宽度1=100 m,虾沟宽度4 m,深1.5 m,边坡1:1,虾沟埂高0.5 m。

2)气象资料

本研究收集了潜江气象站1973-2013年共计41 a逐日气象资料,包括水面蒸发量、降雨量、日最高气温、日最低气温、日平均气温、平均相对湿度、日平均风速、日照时数等。

3)水稻蒸发蒸腾量

根据气象资料利用Penman-Monteith公式计算参考作物腾发量ET0,通过作物系数c与参考作物腾发量乘积得到实际作物腾发量ETC。通过实地调研,搜集到了江汉平原区丫角站(1985-2005年)、东风渠站(1960-1967年、1976-2003年)、三湖连江站(1983年、1985-1991年、1993-2003年)试验数据,通过丫角站、东风渠站、三湖连江站试验数据分析得到了江汉平原区水稻作物系数,本研究直接采用该值,具体见表1。

4)稻田与虾沟渗漏量

水稻生育期内稻田渗漏量采用江汉平原区丫角站、东风渠站、三湖连江站试验分析值(试验年份同上);水稻非生育期虾沟与稻田一直保持有水层,参考中稻返青期稻田渗漏成果。具体见表1。

5)水面蒸发量

由于潜江站仅有小型蒸发皿水面蒸发资料,无大型蒸发皿水面蒸发观测资料,因此采用值法进行转换。值采用天门站点(1997-2001年)率定值0.607。

6)水质换水定额

根据实地调研,水质条件较好的地区不存在水质换水定额,本次计算不考虑水质换水定额。

7)虾稻共作水稻生育期及水层控制标准

根据实地调研,水稻非生育期、水稻孕穗期、抽穗开花期稻田水层与虾沟水层持平;其他生育期虾沟水层低于稻田田埂高度。根据调研成果,确定了不同时期稻田与虾沟水层设置标准。具体见表1。

3.3 结果与分析

根据多年计算结果,统计了不同频率水稻生育虾稻共作灌溉定额、水稻非生育期虾稻灌溉定额、虾稻共作灌溉定额,具体见表2。由表2可知,虾稻共作灌溉定额多年平均为12 945 m3/hm2,明显大于中稻灌溉用水定额;虾稻共作灌溉定额在50%频率、75%频率、85%频率及90%频率下分别为13 185、14 355、14 925和15 285 m3/hm2,不同频率灌溉用水定额相差较小,主要原因是不同频率降雨主要影响水稻灌溉定额。与水稻相比,虾稻灌溉定额较大主要原因包括:1)计算时段为全年,而水稻灌溉定额仅为水稻生育期;2)水稻非生育期水面蒸发量大于土壤蒸发;3)水稻生育期虾稻共养阶段水层较深,孕穗期为实现小龙虾到稻田活动,有一次定额较大的补水;4)水稻收获后虾沟和稻田水层持平需要一次定额较大的补水。

表1 不同时期水稻作物系数、稻田及虾沟渗漏量及水层控制标准

表2 虾稻共作灌溉定额计算成果表

根据湖北省灌溉用水定额标准,江汉平原区水稻灌溉定额多年平均值为4 050 m3/hm2,本研究水稻生育期虾稻共作灌溉定额多年平均值为5 370m3/hm2,主要原因是虾稻共作水稻田水层深度明显增加,导致灌溉定额增加,符合一般规律。根据实地调研,潜江市虾稻共作灌溉定额约为水稻灌溉定额的3倍左右,约12 150 m3/hm2,本虾稻共作灌溉定额为12 945 m3/hm2,计算成果与实地调研较为接近,能够反映虾稻共作用水水平,表明了计算成果的合理性与计算方法的可行性。由于研究区水质条件较好,不存在水质换水定额,本研究未考虑水质换水定额,当水质条件不好,需要进行换水时,还应考虑该部分定额。

4 结 论

1)在实地调研基础上,将1个周年划分为水稻非生育期阶段、水稻生育期虾稻分养阶段、水稻生育期虾稻共养阶段3个阶段;根据每个阶段水分控制标准,基于水平衡原理,系统性提出了虾稻共作的计算方法。

2)以湖北省潜江市为例,对计算参数进行了确定,采用本研究提出的方法对潜江市虾稻共作灌溉定额进行了计算,虾稻共作灌溉定额多年平均12 945 m3/hm2。

本研究成果为虾稻共作灌溉定额提供了一种计算方法,对虾稻共作区域水资源配置、农业取水许可等用水管理具有重要指导意义。

[1] 李伦,罗强,吴士龙,等. 渔稻养作及其在涝渍地综合利用中的研究综述[J]. 节水灌溉,2016(5):75-80.

Li Lun, Luo Qiang, Wu Shilong, et al. Review of integrated rice-fish farming and its comprehensive utilization in waterlogged land[J]. Water Saving Irrigation, 2016(5): 75-80. (in Chinese with English abstract)

[2] 谢瑞,纪镇剑,向明,等. 黔北稻虾共生综合种养示范效果[J]. 耕作与栽培,2018,225(5):42-43.

Xie Rui, Ji Zhenjian, Xiang Ming, et al. Rice-crayfish symbiosis comprehensive cultivation and breeding effect of demonstration in northern of guizhou[J]. Tillage and Cultivation, 2018, 225(5): 42-43. (in Chinese with English abstract)

[3] 陈坤,曾君,黄国海,等. 潜江市发展小龙虾产业的探索与启示[J]. 湖北农业科学,2016,55(11):2955-2959.

Chen Kun, Zeng Jun, Huang Guohai, et al. The exploration and enlightenment of crayfish industry development in Qianjiang City[J]. Hubei Agricultural Sciences, 2016, 55(11): 2955-2959. (in Chinese with English abstract)

[4] 陶忠虎,周浠,周多勇,等. 虾稻共生生态高效模式及技术[J].中国水产,2013(7):68-70.

Tao Zhonghu, Zhou Xi, Zhou Duoyong, et al. Ecological efficient model and technology of rice-crayfish mode[J]. China Fisheries, 2013(7): 68-70. (in Chinese with English abstract)

[5] 周贵忠,郭武强,肖燃. 江汉平原的虾稻之稻种植技术[J]. 杂交水稻,2018,33(4):32-35.

Zhou Guizhong, Guo Wuqiang, Xiao Ran. The rice planting techniques of shrimp-rice fields in Jianghan plain[J]. Hybrid Rice, 2018, 33(4): 32-35. (in Chinese with English abstract)

[6] 王海洋,夏思成,潘宗瑾,等. 江苏沿海地区虾稻共作种养模式与关键技术[J]. 大麦与谷类科学,2018,35(2):54-56.

Wang Haiyang, Xia Sicheng, Pan Zongjin, et al. Breeding mode and key technology of rice-crayfish mode in coastal areas of Jiangsu Province[J]. Barley and cereal sciences, 2018, 35(2): 54-56. (in Chinese with English abstract)

[7] 吴向东,杨晓芬,林水娟,等. 浙西南山区“稻虾”共生综合种养模式初探[J]. 中国稻米,2018,24(3):97-98.

Wu Xiangdong, Yang Xiaofen, Lin Shuijuan, et al. Study on the “rice-small lobsters” symbiosis planting-raising mode in the southwest mountain area of Zhejiang province[J]. China Rice, 2018, 24(3): 97-98. (in Chinese with English abstract)

[8] 肖求清. 稻虾共作对稻田生物多样性的影响[D]. 武汉:华中农业大学,2017.

Xiao Qiuqing. Effects of Rice-crayfish Farming on Biodiversity in Paddy[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese with English abstract)

[9] 佀国涵. 长期稻虾共作模式下稻田土壤肥力变化特征研究[D]. 武汉:华中农业大学,2017.

Si Guohan. Study on Change Characteristics of Soil Fertility in Paddy Fields under Long-term Integrated Rice-crayfish Model[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese with English abstract)

[10] Ahmed N, Allison E H, Muir J F. Rice fields to prawn farms: A blue revolution in southwest Bangladesh[J]. Aquaculture International, 2010, 18(4): 555-574.

[11] Chien Y H, Avault Jr J W. Production of crayfish in rice fields[J]. Prog Fish-Cult, 1980, 42: 67-71.

[12] 李伦,吴士龙,罗强,等. 涝渍地渔稻养作对区域排涝模数的影响研究[J]. 中国农村水利水电,2017(5):9-13.

Li Lun, Wu Shilong, Luo Qiang, et al. the impact of rice-fish farming on the drainage modulus of waterlogged area[J]. China Rural Water and Hydropower, 2017(5): 9-13. (in Chinese with English abstract)

[13] 胡小军. 稻渔共作水稻生态生理特征及优质高产无公害生产技术研究[D]. 扬州:扬州大学,2005.

Hu Xiaojun. Study on Eco-physiological Characteristics and Techniques for High yield, Good Quality and Non-hazard of Rice in Rice-fish Culture[D]. Yangzhou: Yangzhou University, 2005. (in Chinese with English abstract)

[14] 吴本丽,陈贵生,赵慧敏,等. 巢湖地区稻虾共作模式对稻田土壤肥力的影响[J]. 安徽农业大学学报,2018,45(1):96-100.

Wu Benli, Chen Guisheng, Zhao Huimin, et al. Effects of the integrated rice-crayfish mode on soil fertility in chaohu lake region[J]. Journal of Anhui Agricultural University, 2018, 45(1): 96-100. (in Chinese with English abstract)

[15] 蔡晨,李谷,朱建强,等. 稻虾轮作模式下江汉平原土壤理化性状特征研究[J]. 土壤学报,2019,56(1):217-226.

Cai Chen, Li Gu, Zhu Jianqiang, et al. Effects of rice-crawfish rotation on soil physicochemical properties in Jianghan Plain[J]. Acta Pedologica Sinica, 2019, 56(1): 217-226. (in Chinese with English abstract)

[16] 管勤壮,成永旭,李聪,等. 稻虾共作对土壤有机碳的影响及其与土壤性状的关系[J]. 浙江农业学报,2019,31(1):113-120.

Guan Qinzhuang, Cheng Yongxu, Li Cong, et al. Changes of organic carbon and relationships with soil properties in rice-crayfish coculture system[J]. Acta Agricultruae Zhejiangensis, 2019, 31(1): 113-120. (in Chinese with English abstract)

[17] 侣国涵,彭成林,徐祥玉,等. 稻-虾共作模式对涝渍稻田土壤微生物群落多样性及土壤肥力的影响[J]. 土壤,2016,48(3):503-509.

Si Guohan, Peng Chenglin, Xu Xiangyu, et al. Effects of rice-crafish integrated mode on soil microbial functional diversity and fertility in waterlogged paddy field[J]. Soils, 2016, 48(3): 503-509. (in Chinese with English abstract)

[18] 刘全科,周普国,朱文达,等. 稻虾共作模式对稻田杂草的控制效果及其经济效益[J]. 湖北农业科学,2017,56(10):1859-1862.

Liu Quanke, Zhou Puguo, Zhu Wenda, et al. Weed control efficacy and economic benefits of rice-lobster farming in paddy rice fields[J]. Hubei Agricultural Sciences, 2017, 56(10): 1859-1862. (in Chinese with English abstract)

[19] 宋庆洋,米武娟,王斌梁,等. 稻虾共作水体浮游植物群落结构特征分析[J]. 水生生物学报,2019,43(2):415-422.

Song Qingyang, Mi Wujuan, Wang Binliang, et al. Characteristics of community structure of phytoplankton in the integrated rice-crayfish symbiosis farming system[J]. Acta Hydrobilogica Sinica, 2019, 43(2): 415-422. (in Chinese with English abstract)

[20] 刘赫群,李嘉尧,成永旭,等. 虾稻共作对稻田土壤线虫群落结构的影响[J]. 土壤,2017,49(6):1121-1125.

Liu Hequn, Li Jiayao, Cheng Yongxu, et al. Effects of rice-crayfish co-culture on nematode communities in rice paddy soil[J]. Soils, 2017, 49(6): 1121-1125. (in Chinese with English abstract)

[21] 朱杰,刘海,吴邦魁,等. 稻虾共作对稻田土壤nirK反硝化微生物群落结构和多样性的影响[J]. 中国生态农业学报,2018,26(9):1324-1332.

Zhu Jie, Liu Hai, Wu Bangkui, et al. Effects of integrated rice-crayfish farming system on community structure and diversity of nirk denitrification microbe in paddy soils[J]. Chinese Journal of Eco-Agriculture, 2018, 26(9): 1324-1332. (in Chinese with English abstract)

[22] 王晓鹏. 盱眙县小龙虾稻田养殖技术要点[J]. 科学养鱼,2016(9):29-30.

Wang Xiaopeng. Technical points of crayfish in rice paddy in in Xuyi County[J]. Scientific Fish Farming, 2016(9): 29-30. (in Chinese with English abstract)

[23] 周多勇,舒娜娜,王淑娟. 虾稻共作养殖技术[J]. 水产养殖,2014(8):20-21.

Zhou Duoyong, Shu Nana, Wang Shujuan. Breeding technology of rice-crayfish mode[J]. Journal of Aquaculture, 2014(8): 20-21. (in Chinese with English abstract)

[24] 徐金根,王建民,曹烈,等. 虾稻共作健康高效养殖技术[J]. 水产养殖,2019(3):22-24.

Xu Jingen, Wang Jianmin, Cao Lie, et al. Healthy and efficient farming technology of rice-crayfish mode[J]. Journal of Aquaculture, 2019(3): 22-24. (in Chinese with English abstract)

[25] 刘闯,陈友明. 虾稻共作稻田设计规划技术要点[J]. 水产养殖,2018(5):35-36.

Liu Chuang, Chen Youming. Technical points for designing rice paddy field for Crawship-Rice[J]. Journal of Aquaculture, 2018(5): 35-36. (in Chinese with English abstract)

[26] 中国渔业协会. 湖北省潜江龙虾“虾稻共作”技术规程:HYG02/516-2013[S]. 北京:国家标准出版社,2013.

[27] 郭长强,崔远来,李新建,等. 广西糖料甘蔗需水量和灌溉定额空间变异[J]. 农业工程学报,2016,32(8):89-97.

Guo Changqiang, Cui Yuanlai, Li Xinjian, et al. Spatial variation of sugarcane water requirement and irrigation quota in Guangxi[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(8): 89-97. (in Chinese with English abstract)

[28] 刘方平,管升明,邓海龙,等. 鄱阳湖流域典型灌区不同区域尺度水稻灌溉定额研究[J]. 节水灌溉,2019(4):12-15.

Liu Fangping, Guan Shengming, Deng Hailong, et al. Study on rice irrigation quota at different regional scales in typical irrigated areas of Poyang Lake Basin[J]. Water Saving Irrigation, 2019(4): 12-15. (in Chinese with English abstract)

[29] 谢先红,崔远来,顾世祥. 云南水稻灌溉定额与农业综合灌溉定额的空间变异性[J]. 农业工程学报,2007,23(5):95-99.

Xie Xianhong, Cui Yuanlai, Gu Shixiang. Spatial variability of rice irrigation quota and comprehensive irrigation quota in Yunnan Province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(5): 95-99. (in Chinese with English abstract)

[30] 商崇菊,郝志斌,袁俊,等. 贵州农业灌溉用水定额修编实践[J]. 灌溉排水学报,2017,36(10):122-128.

Shang Chongju, Hao Zhibin, Yuan Jun, et al. Reallocating water resources for irrigation in Guizhou Province: method and experiences[J]. Journal of Irrigation and Drainage, 2017, 36(10): 122-128. (in Chinese with English abstract)

Determination method of irrigation quota of crayfish-rice culture

Liu Luguang1,2, Wu Xia1,2, Guan Honglin1,2, Pan Shaobin1,2, Cui Yuanlai3, Dong Wei1,2, Yang Xiaowei1,2, Luo Qiang3

(1.,430070,; 2.,430070; 3.,,430072,)

In the recent years, areas of crayfish-rice culture are greatly increased in Lower-and-Middle Section of Yangtze River. This farming model has changed the structure of the field and water-use model. The determination model of irrigation quota is different from general crop and more complex. In this study, we established a method to determine irrigation quota of crayfish-rice culture. The study took Qianjiang city of Hubei Province as a case. By investigation in March 2018, we found the crayfish-rice culture in this study area was carried out in fields with crayfish ditch around the paddy field. The culture was divided into 3 stages in a year: crayfish-rice culture at growing stage of rice, crayfish-rice separate culture at growing stage of rice and non-growth stage of rice. During non-growth stage of rice, water body in the paddy field was connected with crayfish ditch. The water layer control model was established based on water balance equation during each stage to calculate irrigation quota. In addition, the quota of water change from poor to good quality was required if the irrigation water quality was poor. Thus, the total irrigation quota of crayfish-rice culture was the sum of irrigation quota at each stage and quota of water change. In 2017, the crayfish-rice culture area reached 46.7 khm2in Qianjiang city. A case study was taken as an example of application of the calculation method in Qianjiang. The field length of crayfish-rice culture was 260 m. The width was 100 m, The width of crayfish ditch was 4 m, its depth was 1.5 m, the slope was 1:1 and the ridge height was 0.5 m. The evaportanspiration of rice was calculated based on Penman-Monteith formula with meteorological data from 3 experimental stations. The other data were from these stations. Due to good water quality, we didn’t consider the water change quota. The crayfish-rice irrigation quota was calculated by the proposed determination method. According to calculation, the annual average irrigation quota of crayfish-rice culture was 12 945 m3/hm2, which was high than irrigation quota of rice. The irrigation quota of crayfish-rice culture at frequency of 50%, 75%, 85% and 90% was 13 185, 14 335, 14 925 and 15 285 m3/hm2, respectively. The irrigation quota was not greatly different among different frequency. According to, the multiyear irrigation quota of rice in this study area was 4 050 m3/hm2. According to this study, the irrigation quota during growing stage of rice was 5 370 m3/hm2, which was higher than the. It was because the irrigation quota in this study included the water for crayfish-rice culture. The investigation on this study showed that the irrigation quota of crayfish-rice culture was about 3 times of that of rice, about 12 150 m3/hm2. It was closer to our study (12 945 m3/hm2). It confirmed the practicability of proposed calculation model. The research provides a calculation method for irrigation quota determination of crayfish-rice culture, and have guiding significance for irrigation and water resources management.

irrigation; precipitation; evapotranspiration; crayfish-rice culture; water balance principle; determination method

10.11975/j.issn.1002-6819.2019.15.010

S275

A

1002-6819(2019)-15-0071-06

2019-01-20

2019-07-10

国家重点研发计划课题(2018YFC1508305);2017年度湖北省水利厅重点科研项目(HBSLKY201710)

刘路广,博士,从事节水灌溉与水资源优化配置研究。Email:wlhllg814704@163.com

刘路广,吴 瑕,关洪林,潘少斌,崔远来,董 苇,杨小伟,罗 强. 虾稻共作灌溉定额确定方法研究[J]. 农业工程学报,2019,35(15):71-76. doi:10.11975/j.issn.1002-6819.2019.15.010 http://www.tcsae.org

Liu Luguang, Wu Xia, Guan Honglin, Pan Shaobin, Cui Yuanlai, Dong Wei, Yang Xiaowei, Luo Qiang. Determination method of irrigation quota of crayfish-rice culture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(15): 71-76. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.15.010 http://www.tcsae.org

猜你喜欢
虾稻水层定额
天然岩沥青混合料路面补充预算定额编制分析
马唐种子萌发及幼苗建成对不同环境因子的响应
小龙虾红虾稻米火潜江“虾”比翼齐飞
基于LUBA模型的煤炭矿山企业定额编制研究
建筑工程预结算中的定额与清单计价应用
长江口邻近水域仔稚鱼分层群聚特征分析
工程造价市场化改革下定额的再认识与建议
虾稻共作养殖注意事项
潜江市:优质粮食工程助推虾稻产业发展
湖北省虾稻产业协会第一届一次会员大会在汉召开