马铃薯块茎蛾性信息素化学合成研究现状

2021-03-09 00:58陈洋赵红怡闫俊杰黄剑高玉林
中国农业科学 2021年3期
关键词:收率块茎马铃薯

陈洋,赵红怡,闫俊杰,黄剑,高玉林,3

马铃薯块茎蛾性信息素化学合成研究现状

陈洋1,赵红怡1,闫俊杰2,黄剑1,高玉林2,3

1绿色农药与农业生物工程国家重点实验室培育基地/绿色农药与生物工程教育部重点实验室/贵州大学精细化工研究开发中心,贵阳 550025;2中国农业科学院植物保护研究所植物病虫害生物学国家重点实验室,北京 100193;3中国农业科学院国家薯类作物研究中心,北京 100081

马铃薯与小麦、水稻和玉米同列为我国四大主粮之一,为确保国家粮食安全战略、合理调整农业种植业结构以及实施脱贫攻坚战略发挥着关键作用。随着马铃薯种植面积的不断扩大,生产和储存中发生的病虫害日益严峻。马铃薯块茎蛾()为马铃薯主要害虫,是起源于美洲并快速传播至世界各地的一种茄科作物害虫,其防控策略主要包括农业防治、化学防治以及生物防治。随着人们环保意识的逐渐增强,使用具有可持续性生态绿色的马铃薯块茎蛾性信息素防治方法,逐渐引发起了农业科学家、生物学家、化学家的广泛关注,为减少化学农药的过度使用和依赖提供了可能。马铃薯块茎蛾性信息素主要包含两种化学结构,4E,7Z-十三碳二烯-1-醇醋酸酯(PTM1)和4E,7Z,10Z-十三碳三烯-1-醇醋酸酯(PTM2)。这两种性信息素的发现和结构确认过程非常曲折,其化学合成方法起始于20世纪70年代,发展于80和90年代,进入21世纪后仅有零星报道,这一过程见证了近代有机合成化学的快速发展。这两种性信息素的化学合成难点在于如何准确而高效率地构筑E式和Z式双键,PTM1的合成策略关键步骤主要包括炔烃还原或重排反应、共轭开环、有机硅诱导贝克曼反应、交叉偶联反应等。迄今仅有两例报道PTM2的合成,由于结构中增加了10位Z式双键,基于PTM1的合成方法,PTM2的两条合成路线采用了相同的偶联方法引入二炔基砌块,然后分别采用Raney-Ni或Lindlar-Pd催化氢化制得7Z,10Z两个连续双键。这些合成策略的实施为PTM1和PTM2的来源作出了重要贡献,然而多数合成路线较为冗长,双键E/Z构型选择性不高,操作比较繁琐。开发马铃薯块茎蛾性信息素简洁高效的合成方法,可为马铃薯块茎蛾田间绿色综合防治技术的广泛应用提供必要的物质来源,将在昆虫性信息素诱捕技术作为有害生物绿色防控重要手段中发挥积极推动作用。

马铃薯块茎蛾;性信息素;天然产物;生物防治;化学合成

作为农业大国,我国农业生态环境面临巨大挑战,农作物灾害多发频发。植物保护是国家农业生态安全、生产安全、粮食安全、质量保障、人民健康的重要屏障,是支撑着我国农业绿色发展的重要学科[1]。在全球气候和局势多变,以及农业产业结构深度调整的大背景下,灾害性农业病虫害在多地呈暴发及迁徙性危害,严重破坏农业生态环境并损害农业经济体系。2000年以来,我国农作物病虫害防控严重依赖传统化学农药,导致病虫害出现不同程度的抗药性和耐药性,防治效果普遍下降,对天敌等非靶标生物的危害日益凸显。

昆虫性信息素在防治过程中具有绿色、环保的特点。在人类利用昆虫性信息素对农业、园艺、林业、储藏产品有害昆虫防治的50多年的研究中,已经发现了数百种性信息素,用于监测昆虫的种类和数量,并保护农作物免受昆虫的侵害。据估计,每年利用昆虫性信息素监测和大规模诱捕害虫数量约为数千万只[2-3]。在数公顷范围内,昆虫种群受空气渗透、引诱和杀灭技术的控制。性信息素在低种群密度下的效率越来越高,有效减少昆虫种群数量,这是常规杀虫剂无法实现的。1959年,Butenandt等[4]从家蚕()雌虫腺体中分离得到了首个昆虫性信息素,结构确认为8E,10Z-十六碳二烯-1-醇,由此,开始了昆虫性信息素长达60多年的研究。据国际公认的反映科学研究水准的数据库Web of sciences统计,60多年来已有大量的昆虫性信息素被分离和鉴定[5-6]。如图1所示,总论文数已达7 821篇,H指数达133,累积被引频次达174 693次。进入21世纪以来,该领域所受到的关注度呈几何指数升高,论文数量和被引频次逐年升高。2019年,相关论文总数达到了432篇,被引频次达到了14 027次。随着人们环保意识的逐渐增强,具有可持续性生态绿色的昆虫性信息素研究再次引起了农业科学家、生物学家、化学家的广泛关注,为减少化学农药的过度使用和依赖提供了可能。该领域逐渐成为绿色植物保护领域中的热点,吸引着越来越多的科学家参与其中[7-10]。

利用昆虫性信息素预防和控制害虫是我国一项重要的生物防治措施。据农业农村部农药登记信息数据库2020年6月新消息显示,迄今仅在水稻二化螟()和梨小食心虫()等部分农作物害虫性信息素的分离、鉴定和性信息素释放节律、田间诱捕效果评价等方面开展了初步探讨,深入的田间应用及作用机制研究未展开[11]。目前发现的昆虫性信息素虽然种类繁多,但存在一些共性:(a)多为脂肪长链烯烃化合物;(b)属于小分子化合物,具有挥发性;(c)由于分子结构中存在烯烃双键、醛酮羰基、醇羟或其乙酰酯等官能团,其活性具有针对性,也由此导致这些分子结构易被生物降解;(d)对靶标生物和非靶标生物安全,无直接杀灭作用,但具有性诱异性、迷向等作用;(e)具有较强专一性和高生物活性;(f)多为几种化合物的混合物,各组分间有着严格的比例。

图1 昆虫性信息素研究论文数量统计(Web of Science)

1 马铃薯病虫害发生状况及马铃薯块茎蛾危害

在我国,马铃薯与小麦、水稻和玉米同列为四大主粮,在确保国家粮食安全战略、合理调整农业种植业结构以及实施脱贫攻坚战略中发挥着关键作用[12]。但随着马铃薯的种植面积不断扩大,生产和储存中发生的病虫害日益严峻[13]。马铃薯青枯病、早晚疫病及地下害虫等传统病虫害呈逐年加重趋势,一些次要病虫害如枯萎病、疮痂病、黑痣病和黄萎病等上升为主要病害。二十八星瓢虫()、马铃薯块茎蛾()、马铃薯金线虫()、马铃薯甲虫()等局部害虫暴发成灾,随着种植结构和规模调整以及气候的变化,危害呈扩散趋势。其中,在四川、云南和贵州等马铃薯主产区,马铃薯块茎蛾已逐渐发展为重要害虫;据报道,国际重大入侵害虫番茄潜麦蛾()在我国马铃薯生产中呈上升趋势[14];虽然在我国尚未报道国际重大害虫马铃薯木虱(),但对马铃薯主产区依然存在潜在威胁,应高度重视[15]。

据统计,我国2019年马铃薯种植面积已达约667万公顷,但种植者因频繁遭受马铃薯块茎蛾的侵袭而苦不堪言。中国农业科学院植物保护研究所高玉林研究组多年来针对马铃薯块茎蛾的分类、习性、发生规律、危害现状、防治策略等开展了持续研究[12-13,16-27]。研究发现马铃薯块茎蛾寄主广泛,如番茄、烟草、茄子、辣椒等茄科作物,但危害最重的是马铃薯,在田间生长期和贮藏期均可危害[28]。在马铃薯田中,卵孵化后,1龄幼虫通过吐丝的方式寻找寄主,一般在叶片中完成其幼虫期,老龄幼虫落入土中化蛹。在储藏期,幼虫大多从芽眼或表皮破裂处进入,先在薯块表皮内层危害,逐渐深入到薯块里面,少数为吐丝结网后蛀入[29],形成弯曲虫道,能食光薯肉,导致块茎腐烂,失去种用和食用价值[30]。在收获时马铃薯薯块在田间停留的时间越长,其被马铃薯块茎蛾危害的概率越大,因此收获前期是该害虫对薯块危害最关键的时期。

马铃薯块茎蛾属鳞翅目麦蛾总科麦蛾科块茎蛾属,又称烟草潜叶蛾。马铃薯块茎蛾及其寄主马铃薯均起源于中美洲和南美洲的北部地区[27]。马铃薯块茎蛾的卵、幼虫以及蛹都可借助马铃薯及其各种包装物进行传播且不受距离的影响。另外,马铃薯块茎蛾成虫自身的飞行能力及幼虫在风力作用下进行迁徙的能力均为其传播提供了有利条件[31]。在18世纪中期,新西兰和澳大利亚首次发现该种对马铃薯块茎产生危害的害虫,并将其报道为马铃薯害虫。1906年,马铃薯块茎蛾从意大利传播到中南亚孟买、印度地区。20世纪70年代,马铃薯块茎蛾随出口的马铃薯传播到伊拉克[32];20世纪80年代早期,俄罗斯第一次对马铃薯块茎蛾进行了报道。至今,马铃薯块茎蛾已在亚洲、欧洲、美洲、非洲、大洋洲等地均有分布[24]。在中国,1937年首次记载了马铃薯块茎蛾危害广西柳州的烟草[33],曹骥[34]认为是由越南以自然传播和人为传带的方式向我国云南传播为主干线,并随后在云南定殖并向周围进行辐射式扩散。

2 马铃薯块茎蛾的防控措施

随着马铃薯种植面积逐渐扩大,重茬连作单一品种,导致马铃薯块茎蛾发生频率逐年增加,呈季节性和周年性趋势,加大了防治难度。马铃薯块茎蛾早期防控主要采用种植抗性品种、深种、灌溉等农业防治措施,但化学防治依然是主要防治方式,由于过度依赖化学农药,导致马铃薯块茎蛾对有机磷、拟除虫菊酯等杀虫剂产生了不同程度的抗药性和耐药性[13,27]。迄今为止,我国登记的马铃薯块茎蛾农药产品共有2个,高效氯氟氰菊酯和虱螨脲,均由世界知名农药公司瑞士先正达登记,国内尚无自主知识产权产品药剂登记[35]。为了减少非靶标登记农药的滥用和登记农药的过度使用,延缓抗药性和耐药性,发现并筛选出多种对马铃薯块茎蛾具有防治作用的天敌昆虫和昆虫病原微生物势在必行。

马铃薯块茎蛾的防控策略主要包括农业防治、化学防治以及生物防治。

农业防治是通过人工营造马铃薯优良的生存环境或引进优良品种,以提高马铃薯的抗虫害能力。包括选育优良种薯、种薯消毒、合理轮作、清洁田园、加强田间管理等。这些方法仅通过人为手段降低危害,并未从根本上消除马铃薯块茎蛾的危害。

喷施农药依然是我国马铃薯块茎蛾防治的主要方法。熏蒸是常用方法,但存在一定风险[30]。化学防治效果虽较好,但会导致诸多生态安全问题,如农残超标等。

生物防治是一种利用害虫天敌或其他有益生物来抑制和杀灭有害生物的环境友好型防治方法,包括以下几种方式:(a)应用对马铃薯块茎蛾具有抑制作用的天敌和微生物[21],包括寄生性和捕食性天敌、病原微生物以及昆虫寄生线虫等;(b)应用对马铃薯块茎蛾产卵有抑制作用的植物及其提取物,例如桉树、皱叶薄荷和藜属植物;(c)研究与开发马铃薯块茎蛾性信息素的诱捕陷阱[36]。近年来,马铃薯块茎蛾性诱防控技术已大面积田间推广应用[28]。2019年,任彬元等[37]针对西南混作区马铃薯病虫害发生动态及防控工作进行了总结,指出在云南、贵州等马铃薯产区中,马铃薯块茎蛾已逐渐成为重要害虫,制约了马铃薯单产水平的提高。

3 马铃薯块茎蛾性信息素的鉴定

自然界中,性成熟的马铃薯块茎蛾雌虫会释放性信息素,引诱雄虫向释放源定向飞行,与之交配以繁衍后代。

1969年印度学者Adeesan等[38]、1972年日本学者Ono等[39]先后报道了马铃薯块茎蛾雌虫分泌信息素以刺激和吸引雄虫与之交配,从此,掀开了科学家们研究马铃薯块茎蛾性信息素的历史篇章。1975年,美国加州大学戴维斯分校的Fouda等[40]首次从雌性马铃薯块茎蛾中分离得到具有强烈性诱效果的一些化合物,由于当时结构分析条件限制,仅采用了化学测试、气相色谱和质谱初步确定了其结构为一些含有不饱和双键和乙酰酯基团的异构体。采用化学合成法,他们合成了7-癸烯-1-醇醋酸酯,7, 9-;7, 10-;7, 11-;7, 12-癸二烯-1-醇醋酸酯系列脂肪长链烯烃乙酸酯,并开展了田间生物活性实验,结果显示在,-异构体中7Z, 11Z-癸二烯-1-醇醋酸酯化合物对雄性马铃薯块茎蛾的诱导效果最为显著。同年,Hindenlang等[41]也进行了雌性马铃薯块茎蛾性信息素的提取分离及田间活性研究,经过确定的化合物无论采用什么比例和浓度进行性诱实验均无诱导效果,推测是分离方法不正确导致没有得到结构正确的性信息素。Roelofs等[42-43]从雌性马铃薯块茎蛾的腺体中提取分离到一种化合物,经过精细的气相色谱与质谱联用的方法初步确定了双键的位置及构型,但结构尚不能完全确定。为了验证推测的结构,他们以商品购买的化合物作为起始原料,经过几步简单化学转化合成得到的化合物结构与色谱手段推测的目标结构的理化性质完全相同,在室内外性诱导活性中表现完全一致。由此,确定了提取分离得到的马铃薯块茎蛾性信息素结构为4E, 7Z-十三碳二烯-1-醇醋酸酯(PTM1)(图2-1)。1976年,Yamaoka等[44]从实验室饲养的未交配雌性马铃薯块茎蛾腺体中分离得到了性信息素混合物,经气相色谱和质谱分析,化学结构初步确定为十三碳三烯醇醋酸酯。为了验证准确的化学结构,他们采用化学降解天然产物的方法,经过肼-过氧化氢部分氢化和臭氧裂解得到系列w-乙酰氧基烷烃混合物,经质谱鉴定,这些降解化合物为4-乙酰氧基丁醛、7-乙酰氧基庚醛和10-乙酰氧癸醛,经过逆推,反证了他们提取得到的信息素结构为4, 7, 10-十三碳三烯酸酯,但遗憾的是没有确定双键的几何构型。1976,Persoons等[45]报道了马铃薯块茎蛾性信息素的提取分离、结构鉴定及田间活性,发现雌性马铃薯块茎蛾腺体中存在两种性信息素混合物,如图2所示,其结构为4E, 7Z-十三碳二烯-1-醇醋酸酯(PTM1)和4E, 7Z, 10Z-十三碳三烯-1-醇醋酸酯(PTM2)。这两种性信息素的化学结构是通过触角电位图、质谱、红外、核磁共振综合波谱解析确定的,此外,他们还通过化学合成进行了结构验证。在田间诱导活性实验中,他们发现上述两种性信息素中任意一种对雄性个体都有一定的诱导效果,三烯醇酯PTM2比二烯醇酯PTM1诱导活性更好。调整使用这两种性信息素的混合比例能够有效改善性诱效果,复配比例范围为4﹕1到1﹕4。

图2 马铃薯块茎蛾性信息素化学结构

1977年,Voerman等[46]综述阐明了马铃薯块茎蛾性信息素为两种化合物,结构分别为4E, 7Z-十三碳二烯-1-醇醋酸酯(PTM1)、4E, 7Z, 10Z-十三碳三烯-1-醇醋酸酯(PTM2),两种化合物以一定比例混合发挥诱导作用。

至此,马铃薯块茎蛾性信息素的活性成分、化学结构及作用特点基本确定。

4 马铃薯块茎蛾性信息素的田间应用

马铃薯块茎蛾性信息素包含PTM1和PTM2,按照严格的组成成分比例发挥作用。在50多年的田间应用中,发展了多种有效的方法,用以检测马铃薯块茎蛾的种群和数量,并对马铃薯块茎蛾进行性诱技术防控。

1976年,Bacon等[47]采用他们自主合成的8种十三碳烯和十三碳烯-1-醇乙酸酯单体(包括PTM1)或其混合物开展田间马铃薯块茎蛾化学诱捕实验,发现PTM1对马铃薯块茎蛾获得最高数量的捕获。Persoons等[45,48]在进行田间马铃薯块茎蛾诱捕实验中发现PTM1和PTM2性信息素混合物具有协同作用,混合比例在4﹕1至1﹕4,但其中任何一种单体独立使用则几乎没有活性。1977年,Carde等[43]发现在田间实验中PTM1能引起良好的雄性反应,而平行比较存在于雌性腺体中的相应高级脂肪烯烃醇类则不会对雄性个体产生吸引反应。1980年,EI-Garhy[49]采用PTM1和PTM2两种性信息素混合物涂抹在橡胶诱芯上开展田间捕获雄性马铃薯块茎蛾的实验时发现,环境温度和相对湿度对诱捕效率的影响非常显著。Raman[50-52]在20世纪80年代应用PTM1和PTM2开展了大量的田间诱捕活性实验,发现PTM1和PTM2的混合物比单独的PTM1更具吸引力,1982年,该课题组使用8种比例配方的PTM1和PTM2混合物进行捕获测试,发现使用PTM1与PTM2的比率为9﹕1时可获得最高捕获率,而比率为1﹕1.5和3﹕1与比率为9﹕1的捕获率相同。但在田间使用90 d后,9﹕1比例的混合物吸引力下降,而 1﹕1.5的比例在90 d后仍保持吸引力,同时在-5℃下保存2个月不会降低该混合物的吸引力。1984年,Toth等[53]研究了雄性马铃薯块茎蛾对两种性信息素成分和雌性粗提物的反应,发现在风洞和田间,相比于仅由三烯组成的化合物,雄性均能够更好地定位PTM1和PTM2(1﹕1)的混合物,与单独使用PTM2相比,PTM1的添加减少了雄蛾在信息素源附近以及在信息源本身所花费的时间,增加了其平均访问该源的次数,同时发现雄蛾对PTM1和PTM2(1﹕1)混合物的行为响应与雌性粗提物引起的相似。1989年,Ortu等[54]报道了他们在1984—1985年使用性信息素诱捕器进行马铃薯块茎蛾田间综合控制的研究,发现用PTM1和PTM2混合物诱捕装置极大地减少了田间捕获的数量,说明交配破坏技术对控制马铃薯块茎蛾有显著效果。1972—2016年,One等[39,55-61]一直开展着马铃薯块茎性信息素结构与性质方面的系统研究,1986年他们在田间应用中发现两种马铃薯块茎蛾性信息素比例受温度影响,随着饲养温度升高,PTM2逐渐下降,性信息素总量并未随之变化,蛹期对温度变化最为敏感。2010和2013年,Kroschel等[31,62]研究了使用两种马铃薯块茎蛾和的单一结构性信息素联合杀虫剂氟氯氰菊酯组成引诱-杀灭系统,在实验室条件下,导致雄性死亡率达100%。在田间和贮藏条件下,诱杀法对马铃薯块茎蛾的防治非常有效,是一种新的、诱导性的(贮藏条件下)、低成本的防治方法,可以有效地融入马铃薯病虫害防治方案中,特别是在热带和亚热带的小型农业系统。2018—2019年,高玉林等[63-66]研发了“以性诱剂为主的马铃薯块茎蛾绿色防控综合技术”,该技术集成了针对马铃薯块茎蛾不同危害阶段进行防控的多项措施,应用性诱剂技术干扰了田间雌成虫的正常交配,雌成虫因缺少交配导致无效卵增多。该技术在云南曲靖应用1—2年之后,马铃薯块茎蛾的数量大幅减少,危害减轻。

综上,以性诱剂为主的马铃薯块茎蛾绿色综合防控技术是一项非常有潜力的绿色防控措施,具有重要的科学研究意义和应用价值。

5 马铃薯块茎蛾性信息素的合成

迄今为止,马铃薯块茎蛾性信息素的来源主要依赖雌性虫源提取,由于虫源腺体中含量较低导致分离效率不高,不能满足较大范围田间应用需求。自1975年Roelofs等[42]、1976年Persoons等[45]相继报道了PTM1和PTM2两个马铃薯块茎蛾性信息素的结构以来,由于这两种性信息素的结构特殊性和显著的性诱导活性,吸引了众多化学家加入到这两个分子的化学合成研究中。

5.1 PTM1的合成

5.1.1 炔烃还原或重排构筑双键 早在1975年,Fouda等[40]在分离马铃薯块茎蛾性信息素过程中,由于条件限制,仅根据气相色谱和质谱推测分离得到性信息素的结构为7, 9或7, 10或7, 12-十三烷-二烯-1-醇乙酸酯,缺乏有力证据,他们采用当时较为流行的化学合成验证法。从后来的研究中发现他们所推测的结构中双键位置错误,但其开展的化学合成验证天然产物结构的方法值得讨论。以商业购买得到6-氯-1-己醇经二氢吡喃保护得到化合物(3)作为起始原料,与乙炔基锂经偶联反应生成辛炔(4),在乙烷溴化镁格氏试剂作用下与正戊醛经格氏反应加成得到炔醇(5),然后在三氯氧磷的作用下发生消去反应得炔基烯烃(6),中间体(6)的炔键在不同催化氢化条件下还原得到E和Z式构型烯烃:(a)在H2/Pd-C作用下氢化得到Z式烯烃(7)(7Z, 9E/Z-十三烷-二烯-1-醇乙酸酯);(b)在Na/NH3(liq.)作用下还原得到E式烯烃(8)(7E, 9E/Z-十三烷-二烯-1-醇乙酸酯)(图3)。

图3 Fouda等合成马铃薯块茎蛾性信息素类似物

1975年,Roelofs等[42]首次确定了马铃薯块茎蛾性信息素的化学结构并开展了全合成研究。如图4所示,以4-戊炔-1-醇和乙烯基乙基醚作为起始原料,经偶联反应得到缩醛(9),在正丁基锂作用下与多聚甲醛反应以71%的收率得到丙炔醇(10)。在氢化锂铝作用下,丙炔醇(10)经还原反应,以84%的收率得到E-式构型烯丙醇(11)。在甲磺酰氯/氯化锂/2, 4, 6-三甲基吡啶共同作用下,E-式构型烯丙醇(11)发生羟基氯代反应,以93%的收率得到所需的烯丙基氯(12)。在氯化亚铜的催化作用下,炔基格式试剂与烯丙基氯(12)发生偶联反应得到炔基E式烯烃(13),粗品未经分离直接用于下一步氢解反应,在三氯乙酰氯作用下,脱去保护基后以60%结晶收率得到伯醇(14),再经Lindlar催化氢化立体选择性还原炔键,以98%的纯度得到Z式构型双键及末端伯醇羟基乙酰化的性信息素PTM1,总反应为8步,总收率为16.9%。

至此,Roelofs等完成了马铃薯块茎蛾性信息素PTM1的首次全合成,对后续的昆虫性信息素化学合成具有极其深远的影响。虽然Roelofs等的合成策略还不够优化,但能够较好控制烯-炔键偶联,以及炔烃立体选择性还原为Z式构型烯烃,这都值得肯定。虽然没有给出确切的Z/E比例,但从其描述中可知比例应该不低,具有一定启发意义。

1978年,Voerman等[67]研究发现PTM1和PTM2的混合物对雄性马铃薯块茎蛾具有显著的吸引效果,并开展了这两种性信息素的全合成研究。如图5所示,以3-溴-1-丙醇作为起始原料,首先以二氢吡喃保护醇羟基得到中间体(16);再与丙炔醇经偶联反应,以78.1%的收率得到炔烃醇(17);随后用氢化铝锂作为还原剂作用于炔基,还原得到E式烯丙醇(18)。由于烯丙醇羟基无法发生偶联反应,需要在对甲苯磺酰氯作为卤源和正丁基锂作为强碱的条件下,发生羟基氯代反应得到烯烃卤化物(19),与炔基格氏试剂经偶联反应及羟基乙酰化反应得到炔基烯烃(20),连续两步收率为76.2%;最后,经镍催化氢化炔烃,以78.9%的收率得到PTM1。经7步转化,以14.4%的总产率完成了PTM1第二条全合成。

图4 Roelofs等首次全合成马铃薯块茎蛾性信息素PTM1

图5 Voerman等合成PTM1

1986年,Yadav等[68]以Z-烯烃-1-醇(21)作为起始原料,经羟基氯化得到Z-式烯烃氯化物(22);再与格式试剂发生偶联反应得到烯烃苄醚(23),在Li/liq.NH3条件下脱除苄基及在三溴化硼作用下羟基溴代两步连续反应以76.5%的收率得到烯烃溴化物(24);与由胺基锂和四氢糠酰氯原位制备得到的4-戊炔-1-醇,再经取代反应,以65%的收率得到烯基炔烃伯醇(25);在液氨/钠条件下炔键经Birch还原,以90%的收率制得4E, 7Z-二烯-1醇(15),最后伯醇羟基经乙酰化反应,以90%的收率得到目标化合物。经此6步反应,以18.8%总收率实现了PTM1的全合成(图6)。

图6 Yadav等合成PTM1

1990年,Nonoshita等[69]发展了使用大位阻二芳基甲基铝作为Claisen重排高选择性构建E-式双键的关键还原剂。其机理是烯丙基乙烯基醚与铝试剂叔丁基取代基轴向相互作用形成反椅式构象过渡态,水解后顺利生成E-式构型双键。如图7所示,以1-庚炔作为起始原料,通过SN2反应,Lindlar还原,去缩醛化以及格氏试剂偶联和取代反应得到烯丙基乙烯基醚(30),在大位阻二芳基甲基铝(31a)作用下发生Claisen重排反应,高立体选择性制得E式构型为主的双烯醛,再经过醛基还原及伯醇乙酰化两步转化,得到目标产物PTM1。经此8步反应,以16.7%总收率实现了PTM1的全合成。

1996年,Vasil’ev等[70]报道了一种简洁高效的5步法合成马铃薯块茎蛾性信息素PTM1的路线,总产率为29%,4E和7Z双键几何构型纯度大于95%。如图8所示,以商品购买得到2E, 4E-壬二烯醛和乙烯基溴化镁作为起始原料,首先经过格氏反应以83%的收率得到三烯二级醇(33);然后在芳烃三羰基铬作用下,发生共轭烯烃的1, 4-选择性还原,以74%的收率得到几何纯度高达96%的Z式烯烃(34),随后在原乙酸三甲酯和少量丙酸的存在下发生Claisen-Johnson重排,以71%的收率得到4E, 7Z双烯(35),最后发生酯还原和羟基乙酰化得到目标化合物。经此5步反应,以38%较高总收率和较高几何构型选择性完成了PTM1的全合成。

1997年,Odinokov等[71]以炔丙醇和1-溴戊烷作为起始原料,首先在正丁基锂和六甲基磷酰胺共同作用下发生偶联反应得到碳链增长的炔丙醇,再在三溴化磷作用下发生羟基溴代得到炔丙基溴,随后原位制备成炔丙基溴化镁格氏试剂,与丙烯醛发生格氏加成反应得到关键中间体(36),在原酸三乙酯作用下经分子内Claisen重排以68%的收率生成化合物(37),构建起了目标分子所需的4E双键;随后在Raney-Ni催化氢化条件下将分子中炔键高效率高选择性还原到7Z双键,至此,目标分子中所需的4E和7Z双键都已构建起来。后续是简单的酯还原为醇,羟基乙酰化保护两个简单转化。经此7步反应,以14.6%的总收率实现PTM1的全合成(图9)。

图7 NonOshita等经克莱森重排反应合成PTM1

图8 Vasil’ev等合成PTM1

图9 OdiNokov等合成PTM1

2007年,Vakhidov等[72]报道了采用Claisen重排反应和Wittig反应研究PTM1合成的新方法。以丙烯醛和2-溴乙醇作为起始原料,首先经格氏反应制得羟基醛(38);再在原乙酸三乙酯存在下发生分子内Claisen重排反应,同时脱除THP,以56%的收率生成E式烯烃羧酸酯(39),随后经PCC氧、Wittig反应构建4E, 7Z式烯烃(35),后续的酯还原及羟基乙酰化两步操作参考文献[71]方法即可顺利制得PTM1(图10)。

5.1.2 共轭开环构建双键 1978年,Alexakis等[73]报道了马铃薯块茎性信息素其中一个组分PTM1的全合成路线,其关键步骤是以有机铜试剂与烯丙基环氧化合物发生开环偶联反应,总收率高达60%。该路线是以二戊基酮锂作为起始原料,首先经加成偶联、共轭开环制备得到关键的E, Z双烯化合物(41),再经羟基氯代及烷基化反应得到中间体(35),随后经过酯还原及羟基乙酰化,得到PTM1(图11)。

5.1.3 贝克曼反应构筑双键 1984年,Nishiyama等[74]利用硅导向Beckmann碎裂化策略开展几种昆虫性信息素立体控制合成新方法。其关键是通过三甲基甲硅烷基辅助区域和立体控制的贝克曼重排反应构建E型双键。该条路线是以2-环戊烯酮作为起始原料,依次与三甲基硅烷基锂、正三丁基锡氢作用,再与辛炔基溴经偶联反应得到化合物(43),经Lindlar催化氢化以84%的收率得到Z式构型烯烃(44),与盐酸羟胺反应生成肟酰酯(45),然后在TMSOTf硅试剂作用下经硅促Beckmann碎裂化反应得到双烯氰基化合物(46),最后经历两次还原及羟基乙酰化得到PTM1(图12)。

图10 Vakhidov等合成PTM1

图11 Alexakis等合成PTM1

图12 Nishiyama等合成PTM1

5.1.4 交叉偶联反应构筑双键 1995年,Hutzinger等[75]发展了烯丙基底物与乙烯基有机金属试剂交叉偶联立体选择性合成Z, E-和1Z, 4Z-二烯的方法,并采用此方法合成了马铃薯块茎蛾性信息素PTM1。合成路线是以3-戊炔-1-醇作为起始原料,经Zipper反应以78%的收率得到4-戊炔-1-醇,随后羟基保护得到化合物(47),再在有机铜试剂作用下得到E式构型烯烃(49),然后在2-噻吩氰基酮酸锂作用下与烯丙基氯经偶联反应,以55%的收率得到双烯烃(51),最后脱除羟基THP保护基及乙酰化保护得到PTM1,总收率为25.8%(图13)。

5.2 PTM2的合成

马铃薯块茎蛾性信息素PTM2的合成实例相对较少,仅有两例早期报道。随着绿色综合防控技术得到大面积推广应用,作为不可或缺的PTM2的合成研究显得尤为重要。

1978年,Voerman等[67]在完成马铃薯块茎蛾性信息素PTM1合成的同时,也开展了另一个性信息素PTM2的合成工作。合成路线采用与图5所示相同策略,所不同的是在制备得到烯丙基氯(19)后,与二炔烃在氯化亚铜催化下偶联得到4E-7, 10-二炔烃(52),随后经Raney-Ni催化氢化得到4E-7Z, 10Z-三烯-1-醇,最后经醋酸酐作用乙酰化得到PTM2,总产率为9.5%(图14)。

1978年,日本学者Fukami等[76]以二氢吡喃保护的炔戊醇化合物(53)作为起始原料,经链增长、炔键还原、羟基卤代得到烯丙基氯(56),再与二炔基格氏试剂偶联得到4E-7, 10-二炔烃(57),随后进行羟基保护基更换,最后经Lindlar氢化还原得到PTM2(图15)。

基于“绿色综合防控”这一时代背景,具有专一性强、对环境友好的马铃薯块茎蛾性信息素应用相关研究受到广泛关注[77-79]。在早期有一些零星合成方法报道,但大多存在收率不高、选择性不好等问题,甚至在文中没有提及E/Z比例,对于几何构型纯度表述较为模糊。合成PTM1和PTM2的难点和挑战在于双键的高立体选择性构建,传统方法主要包括炔化物还原、Grignard试剂偶联、Wittig反应等,但这些方法存在选择差、操作繁琐等缺陷。

图13 Hutzinger等合成PTM1

图14 Voerman等合成PTM2

图15 Fukami等首次合成PTM2

6 结语

马铃薯种植对改善农民的生活质量和提高农民收入发挥着重大作用,在我国“三区三州”深度贫困区脱贫攻坚中发挥了无可替代的作用。马铃薯块茎蛾等多种害虫在马铃薯种植和存储过程中造成严重危害,产量平均损失达40%—45%[27]。目前发展的马铃薯块茎蛾性诱剂防治措施在田间实验中取得良好效果,PTM1和PTM2两种性信息素化学合成实用方法开发具有重要的科学意义和应用前景。

[1] 中国科学技术协会. 2016-2017植物保护学学科发展报告. 北京: 中国科学技术出版社, 2017: 5-20.

China Association of science and technology. 2016-2017 Report on advances in plant protection. Beijing: China Science and Technology Press, 2017: 5-20. (in Chinese)

[2] 郑丽霞, 吴兰花, 余玲, 吴伟坚, 魏洪义. 昆虫类信息素研究进展及应用前景. 植物保护学报, 2018, 45(6): 1185-1193.

Zheng L X, Wu L H, Yu L, Wu W J, Wei H Y. Advances in the research and application prospects of insect parapheromones. Journal of Plant Protection, 2018, 45(6): 1185-1193. (in Chinese)

[3] 王安佳, 张开心, 梅向东, 高玉林, 张涛, 折冬梅, 宁君. 昆虫性信息素及其类似物干扰昆虫行为的机理和应用研究进展. 农药学学报, 2018, 20(4): 425-438.

WANG A J, ZHANG K X, MEI X D, GAO Y L, ZHANG T, SHE D M, NING J. Research progress on mechanisms and applications of insect mating behavior disruption by insect sex pheromones and analogues. Chinese Journal of Pesticide Science,2018, 20(4): 425-438. (in Chinese)

[4] BUTENANDT A, BECKMANN R, STAMM D, HECKER E. Über den sexual lockstoff des seidenspinners. Reindarstellung und Konstitution. Zeitschrift fur Naturforschung,1959, 14: 283-284.

[5] WITZGALL P, KIRSCH P, CORK A. Sex pheromones and their impact on pest management. Journal of Chemical Ecology,2010, 36: 80-100.

[6] SHEN S, CAO S, ZHANG Z, KONG X, LIU F, WANG G, ZHANG S. Evolution of sex pheromone receptors inWalker (lepidoptera: Lasiocampidae) is divergent from other moth species. Insect Biochemistry and Molecular Biology,2020, 122: 103375.

[7] REGNIER F E, LAW J H. Insect pheromones. Journal of Lipid Research,1968, 9: 541-551.

[8] WRIGHT R H. After pesticides—what? Nature,1964, 204(4954): 121-125.

[9] 袁文静. 昆虫性信息素诱捕技术在蔬菜病虫害防治中的示范试验. 现代园艺, 2019(9): 36-37, 178.

YUAN W J. The demonstration experiment of insect sex pheromone trapping technology in vegetable pest control. Modern Horticulture,2019(9): 36-37, 178. (in Chinese)

[10] 刘洪辰, 李桂彬. 昆虫性信息素在生物防治中应用的专利分析. 安徽农业科学, 2018, 46(18): 191-193.

LIU H C, LI G B. Analysis of pantent application on insect sex pheromones for biological prevention. Journal of Anhui Agricultural Sciences, 2018, 46(18): 191-193. (in Chinese)

[11] 中国农药信息网. 昆虫性信息素登记药剂现状, 2020. http://www.chinapesticide.org.cn/hysj/index.jhtml.

China pesticide information network. Current situation of registered pesticides for insect sex pheromone, 2020. http://www.chinapesticide. org.cn/hysj/index.jhtml. (in Chinese)

[12] 高玉林, 徐进, 刘宁, 周倩, 丁新华, 詹家绥, 成新跃, 黄剑, 鲁宇文, 杨宇红. 我国马铃薯病虫害发生现状与防控策略. 植物保护, 2019, 45(5): 106-111.

GAO Y L, XU J, LIU N, ZHOU Q, DING X H, ZHAN J S, CHENG X Y, HUANG J, LU Y W, YANG Y H. Current status and management strategies for potato insect pests and diseases in China. Plant Protection,2019, 45(5): 106-111. (in Chinese)

[13] 徐进, 朱杰华, 杨艳丽, 汤浩, 吕和平, 樊明寿, 石瑛, 董道峰, 王贵江, 王万兴, 熊兴耀, 高玉林. 中国马铃薯病虫害发生情况与农药使用现状. 中国农业科学, 2019, 52(16): 2800-2808.

XU J, ZHU J H, YANG Y L, TANG H, LÜ H P, FAN M S, SHI Y, DONG D F, WANG G J, WANG W X, XIONG X Y, GAO Y L. Status of major diseases and insect pests of potato and pesticide usage in China. Scientia Agricultura Sinica, 2019, 52(16): 2800-2808. (in Chinese)

[14] ZHANG G F, MA D Y, WANG Y S, GAO Y H, LIU W X, ZHANG R, FU W J, XIAN X Q, WANG J, KUANG M, WAN F H. First report of the South American tomato leafminer,(Meyrick), in China. Journal of Integrative Agriculture,2020, 19(7): 1912-1917.

[15] 何小丽, VERONESI E, STEPHEN W, 祝增荣, 高玉林, 周文武. 警惕茄科作物重大害虫马铃薯木虱入侵风险及危害. 应用昆虫学报, 2019, 56(6): 1422-1429.

HE X L, VERONESI E, STEPHEN W, ZHU Z R, GAO Y L, ZHOU W W. The risk posed by the potato psyllid(Hemiptera: Triozidae) an important invasive pest of solanaceous crops. Chinese Journal of Applied Entomology, 2019, 56(6): 1422-1429. (in Chinese)

[16] ZHENG Y Q, ZHANG L M, CHEN B, YAN N S, GUI F R, ZAN Q A, DU G Z, HE S Q, LI Z Y, GAO Y L, XIAO G L. Potato/maize intercropping reduces infestation of potato tuber moth,(Zeller) by the enhancement of natural enemies. Journal of Integrative Agriculture,2020, 19(2): 394-405.

[17] ZHENG Y Q, XIAO G L, ZHOU W W, GAO Y L, LI Z Y, DU G Z, CHEN B. Midgut microbiota diversity of potato tuber moth associated with potato tissue consumed. BMC Microbiology,2020, 20: 58.

[18] YAN J J, SARKAR S C, MENG R X, REITZ S, GAO Y L. Potential of(Weiser) as a biological control agent against potato tuber moth,(Zeller) (Lepidoptera: Gelechiidae). Journal of Integrative Agriculture,2020, 19(2): 389-393.

[19] LI X, ZHANG X G, XIAO C, GAO Y L, DONG W X. Behavioral responses of potato tuber moth () to tobacco plant volatiles. Journal of Integrative Agriculture,2020, 19(2): 325-332.

[20] ZHANG X G, LI X, GAO Y L, LIU Y, DONG W X, XIAO C. Oviposition deterrents in larval frass of potato tuberworm moth,(Lepidoptera: Gelechiidae). Neotropical entomology,2019, 48: 496-502.

[21] YUAN H G, WU S Y, LEI Z R, RONDON S I, GAO Y L. Sub-lethal effects of(Balsamo) on field populations of the potato tuberwormZeller in China. Journal of Integrative Agriculture,2018, 17(4): 911-918.

[22] RONDON S I, GAO Y. The journey of the potato tuberworm around the world//Perveen F K. Moths-Pests of potato, maize and sugar beetIntechopen, 2018: 17-52.

[23] GAO Y L. Potato tuberworm: A threat for China potatoes. Entomology, Ornithology and Herpetology: Current Research,2018, 7(2): 1000e132.

[24] GAO Y L. Potato tuberworm: impact and methods for control—mini review. CAB Reviews,2018, 13(22): 1-3.

[25] CHENG X Y, GAO Y Y, YANG C L, ZHANG X, QIN F F, LU J, GAO Y L, XU R M. Potential of entomopathogenic fungusfor controlling the potato tuberworm(Zeller) (Lepidoptera: Gelechiidae). Israle Journal of Entomology,2018, 48(2): 197-208.

[26] YUAN H G, LEI Z R, RONDON S I, GAO Y L. Potential of a strain of(Hypocreales: Cordycipitaceae) for the control of the potato tuberworm,(Zeller). International Journal of Pest Management, 2017, 63(4): 352-354.

[27] 闫俊杰, 张梦迪, 高玉林. 马铃薯块茎蛾生物学、生态学与综合治理. 昆虫学报, 2019, 62(12): 1469-1482.

YAN J J, ZHANG M D, GAO Y L. Biology, ecology and integrated management of the potato tuber moth,(Lepidoptera: Gelechiidae). Acta Entomologica Sinica, 2019, 62(12): 1469-1482. (in Chinese)

[28] 韩扬眉, 刘如楠. 技术做媒马铃薯块茎蛾难逃“美人关”. 粮食科技与经济, 2019, 44(8): 14-15.

HAN Y M, LIU R N. Technology as a medium: potato tuber moth cannot escape the “beauty pass”. Grain science and technology and Economy, 2019, 44(8): 14-15. (in Chinese)

[29] COLL M, Gavish S, Dori I. Population biology of the potato tuber moth,(Lepidoptera: Gelechiidae), in two potato cropping systems in Israel. Bulletin of Entomological Research,2000, 90: 309-315.

[30] 谢春霞. 马铃薯块茎蛾综合防治技术. 中国马铃薯,2014, 28(4): 235-237.

XIE C X. Integrated control techniques of(Zeller). Chinese Potato Journal, 2014, 28(4): 235-237. (in Chinese)

[31] KROSCHEL J, ZEGARRA O. Attract-and-kill as a new strategy for the management of the potato tuber moths(Zeller) and(Gyen) in potato: evaluation of its efficacy under potato field and storage conditions. Pest Management Science,2013, 69: 1205-1215.

[32] AL-ALI A S, AL-NEAMY I K, ABBAS S A, ABDUL-MASIH A M E. Observations on the biology of the potato tuber moth Phthorimaea// Division of Entomology, Directorate General of Plant Protection, Abu-Ghraib, Iraq1975, 79: 345-351.

[33] 李秀军, 金秀萍, 李正跃. 马铃薯块茎蛾研究现状及进展. 青海师范大学学报(自然科学版),2005(2): 67-70.

LI X J, JIN X P, LI Z Y. The present status and developing tendency inresearch. Journal of Qinghai Normal University (Natural Science Edition),2005(2): 67-70. (in Chinese)

[34] 曹骥. 马铃薯块茎蛾发生规律初探. 植物保护,1964, 2(5): 238.

CAO J. Preliminary study on the occurrence of potato tuber moth. Plant Protection, 1964, 2(5): 238. (in Chinese)

[35] 中国农药信息网. 马铃薯块茎蛾登记药剂现状. http://www. chinapesticide.org.cn/hysj/index.jhtml.

China pesticide information network. Status of registration agents for potato tuber moth. http://www.chinapesticide.org.cn/hysj/index.jhtml. (in Chinese)

[36] LAL L. Relationships between pheromone catches of adult moths, foliar larval populations and plant infestations by potato tuberworm in the field. Tropical Pest Management, 1989, 35(2): 157-159.

[37] 任彬元, 马中正, 李天娇, 赵中华, 李春广, 王万兴, 闫硕. 西南混作区马铃薯病虫害发生动态及防控工作建议. 中国植保导刊,2019, 39(5): 78-83.

REN B Y, MA Z Z, LI T J, ZHAO Z H, LI C G, WANG W X, YAN S. Occurrence trends of potato diseases and insect pests in southwest mixed cropping area and suggestions for prevention and control. China Plant Protection,2019, 39(5): 78-83. (in Chinese)

[38] ADEESAN C, TAMHANKAR A J, RAHALKAR G W. Sex pheromone gland in the potato tuberworm moth,. Annals of the Entomological Society of America,1969, 62(3): 670-671.

[39] ONO T, IYATOMI K, SAITO T. Mating behavior of the potato tuber moth,Zeller. Japanese journal of applied entomology and zoology,1972, 16(1): 51-53.

[40] FOUDA H G, SEIBER J N, BACON O G. A potent sex attractant for the potato tuberworm moth. Journal of Economic Entomology, 1975, 68(4): 423-427.

[41] HINDENLANG D M, MCLAUGHLIN J R, GUILIANO R M, HENDRY L B. A sex pheromone in the potato tuberworm moth,(Zeller): biological assay and preliminary chemical investigation. Journal of Chemical Ecology,1975, 1(4): 465-473.

[42] ROELOFS W L, KOCHANSKY J P, CARDE R T, KENNEDY G G, HENRICK C A, LABOVITZ J N, CORBIN V L. Sex pheromone of the potato tuberworm moth,. Life Sciences,1975, 17(5): 699-705.

[43] CARDE R T, KOCHANSKY J P, ROELOFS W L. Sex pheromone for potato tubeworm moth,: US4010255A[P]. (1977-03-01) [2020-06-28].

[44] YAMAOKA R, FUKAMI H, ISHII S. Isolation and identification of the female sex pheromone of the potato tuberworm moth,(Zeller). Agricultural and Biological Chemistry,1976, 40(10): 1971-1977.

[45] PERSOONS C J, VOERMAN S, VERWIEL P E J, RITTER F J, NOOYEN W J, MINKS A K. Sex pheromone of the potato tuberworm moth,: isolation, identification and field evaluation. Entomologia Experimentalis et Applicata,1976, 20: 289-300.

[46] VOERMAN S, MINKS A K, PERSOONS C J. Elucidation of the sex pheromone system of the potato tuberworm moth,(Zeller) (Lepidoptera, Gelechiidae): a short review. Potato Research,1977, 20: 123-126.

[47] BACON O G, SEIBER J N, KENNEDY G G. Evaluation of survey trapping techniques for potato tuberworm moths with chemical baited traps. Journal of Economic Entomology,1976, 69(5): 569-572.

[48] RITTER F J, PERSOONS C J. Recent development in insect pheromone research, in particular in the Netherlands. Netherlands Journal of Zoology,1975, 25(3): 261-275.

[49] EL-GARHY M S. Preliminary results with sex pheromones to trap potato tuber worm moths in Saudi Arabia. Potato Research,1980, 23: 361-363.

[50] RAMAN K V. Field trials with the sex pheromone of the potato tuberworm. Environmental Entomology,1982, 11(2): 367-370.

[51] RAMAN K V. Control of potato tuber mothwith sex pheromones in Peru. Agriculture, Ecosystems and Environment,1988, 21: 85-99.

[52] RAMAN K V. Evaluation of a synthetic sex pheromone funnel trap for potato tuberworm moths (Lepidoptera: Gelechiidae). Environmental Entomology,1984, 13(1): 61-64.

[53] TOTH M, BELLAS T E, ROTHSCHILD G H L. Role of pheromone components in evoking behavioral responses from male potato tuberworm moth,(Zeller) (Lepidoptera: Gelechiidae). Journal of Chemical Ecology,1984, 10(2): 271-280.

[54] ORTU S, FLORIS I. Preliminary study on the control of(Zeller) (Lepidoptera: Gelechiidae) on potato crops in Sardinia. Difesa Delle Piante,1989, 12(1/2): 81-88.

[55] TEJIMA S, ONO T, SAKUMA M. Antennal mechanosensors mediate sex pheromone-induced upwind orientation in the potato tuberworm moth. Physiological Entomology,2017, 42: 113-124.

[56] TEJIMA S, ONO T, SAKUMA M. Aim-then-shoot anemotaxis involved in the hopping approach of potato tuberworm mothtoward a sex pheromone source. Physiological Entomology,2013, 38: 292-301.

[57] ONO T, CHOUVALITWONGPORN P, SAITO T. Comparison of the sex pheromone system between Japanese and Thai populations of the potato tuberworm moth,(Lepidoptera: Gelechiidae). Applied Entomology and Zoology,1997, 32(3): 514-517.

[58] ONO T. Effect of temperature on biosynthesis of sex pheromone components in potato tuberworm moth,(Lepidoptera:Gelechidae). Journal of Chemical Ecology,1994, 20(10): 2733-2741.

[59] ONO T. Effect of rearing temperature on pheromone component ratio in potato tuberworm moth,(Lepidoptera: Gelechiidae). Journal of Chemical Ecology,1993, 19(1): 71-81.

[60] ONO T, ORITA S. Field trapping of the potato tuber moth,(Lepidoptera: Gelechiidae), with the sex pheromone. Applied Entomology and Zoology, 1986, 21(4): 632-634.

[61] ONO T. Male approach to the female and the role of two pheromone components in the potato tuber moth,(Lepidoptera: Gelechiidae).Applied Entomology and Zoology, 1985, 20(1): 34-42.

[62] KROSCHEL J, ZEGARRA O. Attract-and-kill: a new strategy for the management of the potato tuber moths(Zeller) and(Gyen) in potato: laboratory experiments towards optimising pheromone and insecticide concentration. Pest Management Science,2010, 66: 490-496.

[63] 高玉林, 梅向东, 翁爱珍, 袁慧果. 一种马铃薯块茎蛾诱剂组合物及其应用: CN108077256A[P]. (2018-05-29)[2020-06-28].

GAO Y L, MEI X D, WENG A Z, YUAN H G. Potato tuber moth attractant composition and its application: CN108077256A[P]. (2018-05-29)[2020-06-28]. (in Chinese)

[64] 高玉林, 梅向东, 翁爱珍, 袁慧果. 一种马铃薯块茎蛾性引诱剂及其用途: CN107864958A[P]. (2018-04-03)[2020-06-28].

GAO Y L, MEI X D, WENG A Z, YUAN H G. Potato tuber moth sex attractant and its application in trapping potato tuber moth: CN107864958A[P]. (2018-04-03)[2020-06-28]. (in Chinese)

[65] 高玉林, 闫俊杰, 梅向东, 翁爱珍, 王留洋, 折冬梅. 一种马铃薯块茎蛾迷向剂及其应用: CN108812665A[P]. (2018-11-16)[2020- 06-28].

GAO Y L, YAN J J, MEI X D, WENG A Z, WANG L Y, SHE D M. Sex pheromone dispenser for disrupting mating behavior ofand application thereof on potato crops: CN108812665A[P]. (2018-11-16)[2020-06-28]. (in Chinese)

[66] 高玉林, 闫俊杰, 梅向东, 王留洋, 宁君. 一种系统优化的马铃薯块茎蛾性引诱剂及其应用: CN110292043A[P]. (2019-10-01)[2020- 06-28].

GAO Y L, YAN J J, MEI X D, WANG L Y, NING J. System optimized potato tuber moth attractant containing-10-tridecene-1- ol acetate and its application: CN110292043A[P]. (2019-10-01)[2020- 06-28]. (in Chinese)

[67] VOERMAN S, ROTHSCHILD G H L. Synthesis of the two components of the sex pheromone systems of the potato tuberworm moth,(Zeller) (Lepidoptera: Gelechiidae) and field experience with them. Journal of Chemical Ecology,1978, 4(5): 531-542.

[68] YADAV J S, REDDY P S. Allylation of Grignard reagents: its application for the synthesis of (4E,7Z)-4,7-tridecadienyl acetate, a sex pheromone of potato tuberworm moth. Synthetic Communications,1986, 16(9): 1119-1131.

[69] NONOSHITA K, BANNO H, MARUOKA K, YAMAMOTO H. Organoaluminum-promoted Claisen rearrangement of allyl vinyl ethers. Journal of the American Chemical Society,1990, 112: 316-322.

[70] VASIL’EV A A, SEREBRYAKOV E P. A simple synthesis of 4E,7Z-tridecadien-1-yl acetate, a component of the sex pheromone of the potato moth(Lepidoptera: Gelechiidae). Russian Chemical Bulletin,1996, 45(9): 2232-2235.

[71] ODINOKOV V N, VAKHIDOV R R, SHAKHMAEV R N, ZORIN V V. Insect pheromones and their analogs. LV. Synthesis of trideca- 4E,7Z-dien-1-yl acetate-component of the sex pheromone of. Chemistry of Natural Compounds,1997, 33(3): 350-352.

[72] VAKHIDOV R R, MUSINA I N. Synthesis of 4E,7Z- tridecadien-1-ylacetate, a component of thesex pheromone. Chemistry of Natural Compounds,2007, 43(3): 282-284.

[73] ALEXAKIS A, CAHIEZ G, NORMANT J F. Highly stereoselective synthesis of the insect sex pheromone ofand of propylure. Tetrahedron Letters,1978(23): 2027-2030.

[74] NISHIYAMA H, SAKUTA K, ITOH K. New stereocontrolled approach to some insect pheromones via silicon-directed Beckmann fragmentation. Tetrahedron Letters,1984, 25(2): 223-226.

[75] HUTZINGER M W, OEHLSCHLAGER A C. Stereoselective synthesis of 1,4-dienes. Application to the preparation of insect pheromones (3Z,6Z)-dodeca-3,6-dien-1-ol and (4E,7Z)-trideca-4, 7-dienyl acetate. Journal of Organic Chemistry,1995, 60(14): 4595-4601.

[76] FUKAMI H, ISHII S, YAMAOKA R. Trideca-4,7,10-trienyl acetate isomers, sex pheromones for: JP53037612A [P]. (1978-04-06) [2020-06-28].

[77] CHANDEL R S, VASHISTH S, SONI S, KUMAR R, KUMAR V. The potato tuber moth,(Zeller), in India: Biology, Ecology, and Control. Potato Research,2020, 63: 15-39.

[78] DUNKELBLUM E, LEVI-ZADA A. Pheromone research and development in Israel 1975-2015. Phytoparasitica,2017, 45: 619-637.

[79] YEW J Y, CHUNG H. Insect pheromones: An overview of function, form, and discovery. Progress in Lipid Research,2015, 59: 88-105.

Chemical Synthesis View on Sex Pheromones of Potato Tuberworm ()

CHEN Yang1, ZHAO HongYi1, YAN JunJie2, HUANG Jian1, GAO YuLin2,3

1State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agriculture Bioengineering, Ministry of Education/Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025;2State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193;3National Center of Excellence for Tuber and Root Crop Research, Chinese Academy of Agricultural Sciences, Beijing 100081

Potato is one of the four staple crops in China together with wheat, rice and maize. It plays a key role in ensuring the national food security strategy, reasonably adjusting the agricultural planting structure, and implementing the poverty alleviation strategy. With the continuous expansion of potato planting area, the occurrence of diseases and insect pests in production and storage is becoming more and more serious. potato tuberworm () is a major potato pest, which originated in America and quickly spread to all over the world. Prevention and control strategy ofmainly include agricultural, chemical and biological methods. With the increasing consciousness of environmental protection, the use of sustainable and ecological green prevention methods ofsex pheromone has attracted considerable attention of agricultural scientists, biologists and chemists, which provides the possibility to reduce the excessive use and dependence of chemical pesticides. The sex pheromones ofmainly contain two chemical structures: 4E, 7Z-tridecadiene-1-ol acetate (PTM1) and 4E, 7Z, 10Z-tridecatriene-1-ol acetate (PTM2). The discovery and structure determination process of these two sex pheromones is very tortuous. The chemical synthesis method of these two sex pheromones started in the 1970s, developed in the 1980s and 1990s, and only a few strategies were reported in the 21st century. This process witnessed the rapid development of modern organic synthetic chemistry. How to construct E and Z olefin accurately and efficiently is a challenge for synthesis of PTM1 and PTM2. The key steps of PTM1 synthetic strategy mainly include alkyne reduction or rearrangement reaction, conjugation ring opening, organosilicon induced Beckmann reaction, cross coupling reaction and so on. Up to now, only two cases were reported about the synthesis of PTM2. Due to the addition of a Z-type olefin bond in the structure, the two synthesis routes of PTM2adopt coupling reaction to introduce diyne block, and then 7Z, 10Z-olefin was synthesis by catalytic hydrogenation reduction of diynes by Raney-Ni or Lindlar-Pd. However, most of the synthetic routes are lengthy, low selectivity of E/Z configuration, and complicated procedure. Developing a facile and efficient synthetic method of sex pheromone ofwill provide the necessary material source for the wide application of green integrated prevention and control technology ofin the field. It will play a positive role in insect sex pheromone trapping technology as an important means of pest prevention and control.

potato tuberworm (); sex pheromone; natural product; biological control; chemical synthesis

10.3864/j.issn.0578-1752.2021.03.010

2020-06-28;

2020-07-28

国家重点研发计划(2018YFD0200802)

陈洋,E-mail:ychen1@gzu.edu.cn。通信作者黄剑,E-mail:jhuang66@163.com。通信作者高玉林,E-mail:gaoyulin@caas.cn

(责任编辑 岳梅)

猜你喜欢
收率块茎马铃薯
遮阴处理对白及块茎产量和有效成分的影响
环境与植物激素对马铃薯块茎休眠与萌发的影响研究
体育人类学研究中的块茎范式新尝试——《作为文化块茎的传统武术:南部侗族黑虎拳的民族志研究》序
焦磷酸亚锡合成收率影响因素探讨
马铃薯有功劳
初夏马铃薯 田间管理抓哪些
短期窖藏下马铃薯块茎品质指标的变化趋势
春栽马铃薯种植技术
新型3-【4-(苯氧基)苯基】-5-【2-甲硫基-4-(三氟甲基)苯基】-1,2,4-噁二唑化合物的合成研究
定边马铃薯