农田防护林根际与非根际土壤氮素形态特征

2022-06-15 16:54李德文季倩如刘英周文玲吴嘉仪赵雨森
森林工程 2022年3期

李德文 季倩如 刘英 周文玲 吴嘉仪 赵雨森

摘 要:探讨根际与非根际土壤氮素形态变化,以阐明农田防护林地对土壤氮循環的影响,为农田防护林的建设管理提供依据。该研究选取黑龙江省拜泉县樟子松纯林、落叶松纯林、樟子松×落叶松混交林3种典型农田防护林型的土壤,测定土壤理化指标、氮素形态指标及氮转化功能基因拷贝数的变化。结果表明,混交林根际土壤的酸性程度高于纯林,其中,樟子松纯林根际土壤pH显著高于其他林型,落叶松纯林土壤电导率最高,其根际电导率值高达(53.33±2.54)μS/cm,混交林土壤容重显著大于纯林(P<0.05);混交林两树种的根际土壤全氮、铵态氮、硝态氮含量均显著高于各自纯林(P<0.05),表明混交林土壤氮素成分在3种林型中最优;与其他林型相比,樟子松纯林根际土壤功能基因拷贝数(amoA-AOA、amoA-AOB、nirS、nosZ、narG、nifH)都处于较低的水平,表明其影响了土壤氮转化速率,降低了土壤铵态氮、硝态氮的含量;冗余分析(RDA)结果表明,农田防护林氮素形态变化与土壤理化指标和氮转化功能基因密切相关,amoA-AOA基因与amoA-AOB基因分别为研究区根际与非根际土壤影响最大的因子,说明硝化作用在土壤氮转化中占主导位置。综上,防护林型的适宜建设程度由大到小为:混交林、落叶松纯林、樟子松纯林。

关键词:拜泉县;农田防护林:林地类型;根际与非根际:理化指标;土壤氮;功能基因

中图分类号:S76    文献标识码:A   文章编号:1006-8023(2022)03-0008-08

Characteristics of Nitrogen Forms in Rhizosphere and Non-rhizosphere

Soil of Farmland Shelter Forests

LI Dewen1,2, JI Qianru1, LIU Ying1, ZHOU Wenling1, WU Jiayi1, ZHAO Yusen2*

(1.Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering

and Resource Utilization, Northeast Forestry University, Harbin 150040, China; 2.School of Forestry, Northeast

Forestry University, Harbin 150040, China)

Abstract:To explore the changes of soil nitrogen forms in rhizosphere and non rhizosphere, in order to clarify the impact of farmland shelter on soil nitrogen cycle, and to provide basis for the construction and management of farmland shelter, in this study, three types of shelter in Baiquan County of Heilongjiang Province were selected as the research objects, including pure forest of Pinus sylvestris var. mongholica Litv., pure forest of Larix gmelinii(Rupr.) Kuzen. and a mix of Pinus sylvestris var. mongholica Litv. and Larix gmelinii(Rupr.) Kuzen. The changes of soil physical and chemical indexes, nitrogen form indexes and copy number of nitrogen transformation functional genes were measured.The results showed that the acidity of rhizosphere soil of mixed forest was higher than that of pure forest. Among them, the pH value of rhizosphere soil of Pinus sylvestris pure forest was significantly higher than that of other forest types. The soil conductivity of Larix pure forest was the highest, and its rhizosphere conductivity value was as high as (53.33±2.54) μs/cm, the soil bulk density of mixed forest was significantly higher than that of pure forest (P<0.05). The contents of total nitrogen, ammonium nitrogen and nitrate nitrogen in rhizosphere soil of mixed forest were significantly higher than those of pure forest (P<0.05), indicating that the soil nitrogen of the mixed forest was the best among the three forest types. Compared with other forest types, the copy numbers of soil functional genes (amoA-AOA, amoA-AOB, nirS, nosZ, narG, nifH) in the rhizosphere of pure Pinus sylvestris stand were at a low level, indicating that it affected the transformation rate of soil nitrogen and reduced the content of soil ammonium nitrogen and nitrate nitrogen. The results of RDA showed that the changes of nitrogen forms in farmland shelter were closely related to soil physical and chemical indexes and nitrogen transformation functional genes. amoA-AOA gene and amoA-AOB gene were the largest influencing factors of rhizosphere and non rhizosphere soils in the study area, indicating that nitrification played a dominant role in soil nitrogen transformation.In conclusion, the suitable construction degree of shelter forest type from the most to the least was mixed forest、pure Larix forest、pure Pinus sylvestris forest.BF49E160-7A68-46CF-AAAF-2FABB8E47933

Keywords: Baiquan County; farmland shelter; woodland type; rhizosphere and non-rhizosphere: physical and chemical index; soil nitrogen; functional gene

0 引言

作为农田生态系统的重要屏障,农田防护林的健康状况监测与评估在我国北方农田林网管理中尤为重要[1-2],适配的农田防护林系统可以改善田间土壤水分含量[3]、防止沟壑侵蚀[4]等,对防护林土壤有着重要的调节作用。防护林树种一般会选择防护、用材兼用型树种,曾以树体高大、生长迅速的杨树类树种为主[5],但常会遭遇枝干病害[6-7]等问题。在对嫩江平原防护林针叶树种蒸腾耗水量的观测中发现,樟子松纯林的蒸腾速率最小[8],肖巍[9]研究表明,樟子松农田防护林网内表层土壤风蚀量小于杨树农田防护林网,由此可知,樟子松等针叶树种作为防护林建设和更新的主栽树种比重应逐步提高。有研究显示,胡桃楸与落叶松混交后胡桃楸根际营养状况明显优于纯林[10]、杉木混交林可以改善土壤质量,尤其是化学性质[11],但也有结果表明,油桐等纯林种植优于混交林[12],探讨不同树种间纯林与混交林的差异,已成为近年来的研究重点。

氮是生态系统中重要的理化指标,可为植物生长提供不可或缺的物质和能量[13]。而氮也是植物需求最多的矿质营养元素[14],土壤中氮素含量的多少直接体现了土壤肥力的大小[15]。林地土壤中的有效氮主要以铵态氮和硝态氮形式存在,研究其动态,对于了解林地生态系统的生产力和氮素循环具有重要意义[16]。土壤铵态氮作为以铵离子(NH+4)形态存在于土壤中,土壤中的NH+4,在微生物作用下氧化成为硝酸盐的现象,就是硝化作用,这一过程可以为喜硝植物提供氮素,但也可能产生淋失现象,使土壤中营养元素大量损失,从而发生反硝化作用。目前,土壤氮循环涉及的功能基因类别广泛,分别在土壤氮素转化中起着不同的驱动作用,包括存在于氨氧化古菌(Ammonia-oxidizing archaea,AOA)和氨氧化细菌(Ammonia-oxidizing bacterial,AOB)中,在土壤里起硝化作用的amoA基因、起反硝化作用的nosZ、narG和nirS基因和研究土壤中固氮菌类群多样性的nifH基因等,而这些基因的拷贝数变化均与土壤理化性质改变密切相关,如图1所示。根际是植物根系与土壤、微生物等接触最频繁的区域,根际环境会直接影响土壤养分向根系的转移和根系的吸收。与非根际相比,根际土壤对林木生长的影响明显强于其他土体,根际土壤与土体其他部分养分含量也有很大差异[17]。农田防护林的经营行为响应的影响因素及内在机理已被大量研究,但是对于林木土壤氮转化功能基因与理化指标间的相关性研究较少。了解林地土壤成分结构,通过分析土壤养分循环基因的变化探讨植物根际与非根际环境的差异,研究根际与非根际土壤养分含量及微生物的差异对于农田防护林的建设具有重要意义。

基于此,本文通过研究拜泉县3种林地类型下根际与非根际土壤理化性质及氮转化功能基因拷贝数差异,探讨土壤理化指标、氮转化功能基因与氮素形态间的相关性,以期为今后防护林的合理经营和土壤氮循环管理提供科学依据。

1 材料与方法

1.1 研究区概况

研究区设在黑龙江省拜泉县(125°30′~126°31′E,47°20′~47°55′N), 地属“北大荒”腹地,北与克山、克东县接壤,东与海伦市隔河相望,南邻明水县,西邻依安县。研究区为中温带大陆性季风气候,年均积温2 454.5 ℃,年均降水量490 mm,年日照时数2 730 h,无霜日122 d。土壤类型主要以黑土类为主,占该地整个土壤类型的67.9%[18],研究区属典型的黑土类土壤类型。

1.2 样品采集与制备

本研究于2021年4月在拜泉縣选取樟子松纯林(Pinus sylvestris var. mongholica Litv.)、落叶松纯林(Larix gmelinii (Rupr.) Kuzen.)、樟子松×落叶松混交林(a mix of Pinus sylvestris var. mongholica Litv. and Larix gmelinii (Rupr.) Kuzen.)3种农田防护林林型,并布设土壤剖面,采集去除枯枝落叶层后的0~20 cm土层根际与非根际土壤样品,其中根际土采用抖落法,非根际土采用“S”形采样法,分别5点混合。将采集的样品分为3部分,一部分放入铝盒称质量,用于土壤含水率测定;另一部分装入洁净的布袋,去除植物残体、大砾石等,在实验室自然风干,用于理化指标及碳素形态的测定;第3部分用提前灭菌过的采样装置锡箔纸、药勺等采集,放入液氮储存,用于后续DNA的提取以及基因功能分析。

1.3 试验方法

1.3.1 土壤理化性质测定

参照土壤农化分析方法[19]分别测定土壤 pH、电导率、容重和含水量等土壤基本理化指标。采用半微量凯氏定氮法测定土壤全氮含量;采用碱解扩散法测定土壤碱解氮含量;采用紫外分光光度法测定土壤硝态氮含量;采用靛酚蓝比色法测定土壤铵态氮含量[20]。

1.3.2 土壤氮转化功能基因拷贝数测定

使用 E.Z.N.A.Soil DNA Kit试剂盒(Omega公司)提取土壤DNA。根据试剂盒步骤进行提取,获得的DNA于 -20 ℃下保存,再用紫外分光光度计进行DNA质量浓度及纯度的测定,同时进行凝胶电泳检测,得到优质DNA。随后,以细菌16S基因为内参,采用qPCR法测定根际及非根际土壤氮循环相关功能基因拷贝数,表1为扩增引物序列。

1.4 数据处理

数据结果均采用平均值±标准差的形式表示,采用SPSS 19.0统计分析软件进行多因素方差分析,采用Canoco 5.0软件进行冗余分析,采用TBtools软件进行热图绘制,采用WPS Excel软件进行图表绘制。BF49E160-7A68-46CF-AAAF-2FABB8E47933

2 结果与分析

2.1 不同林型根际与非根际土壤理化性质加权平均含量差异

2.1.1 土壤理化指标含量差异

由表2方差分析表明,对于不同农田防护林型的土壤而言,樟子松和落叶松纯林的根际土壤pH显著高于其混交林(P<0.05),非根际土壤间差异不显著;与樟子松纯林和樟子松-落叶松混交林相比,落叶松纯林的土壤电导率最高,其根际电导率值达到(53.33±2.54) μS/cm;各林型间含水量无显著差异,混交林土壤容重显著大于纯林(P<0.05)。

2.1.2 土壤氮素形态含量差异

对3种林型土壤氮素形态含量进行差异分析,如图2所示,结果表明,各林型树种的根际土壤全氮含量高于非根际,混交林两树种的土壤全氮含量均高于各自纯林;根际土壤混交林的铵态氮含量高于纯林,且落叶松高于樟子松,在非根际土壤中,樟子松铵态氮的含量高于落叶松;樟子松纯林根际硝态氮含量显著低于非根际,而混交林两树种硝态氮含量均是根际显著高于非根际,从林型来看,根际土壤混交林硝态氮含量高于纯林,落叶松林硝态氮含量高于樟子松林(P<0.05);3种林型碱解氮含量均是根际低于非根际,且只有樟子松纯林根际与非根际间有显著的差异(P<0.05)。

ZPR为樟子松纯林根际;ZPNR为樟子松纯林非根际;LPR为落叶松纯林根际;LPNR为落叶松纯林非根际;MZPR为混交林樟子松根际;MZPNR为混交林樟子松非根际;MLPR为混交林落叶松根际;MLPNR为混交林落叶松非根际。

ZPR is pure forest rhizosphere of Pinus sylvestris, ZPNR is pure forest non-rhizosphere of Pinus sylvestris, LPR is pure forest rhizosphere of Larch sylvestris,  LPNR is pure forest non-rhizosphere of Larch sylvestris, MZPR is the rhizosphere of Pinus sylvestris mixed forest, MZPNR is the non-rhizosphere of Pinus sylvestris mixed forest, MLPR is the rhizosphere of larch in mixed forest, MLPNR is the non-rhizosphere of larch in mixed forest.

2.2 不同林型土壤氮转化功能基因拷贝数差异分析

对根际土壤混交林及纯林中的不同林木根际土壤功能基因拷贝数进行综合排序,如图3(a)所示,除amoA-AOA基因外,其他基因都是落叶松表达量最高,且amoA-AOA基因落叶松纯林的表达量也高于樟子松纯林。樟子松纯林6种土壤氮转化功能基因拷贝数与其他林型相比均处于较低的位置,而落叶松纯林各个基因的表达量都相对较高。在非根际土壤中,综合排序与根际土壤结果相同,如图3(b)所示,但樟子松林土壤amoA-AOA基因拷贝数显著高于落叶松(P<0.05)。

2.3 不同林型土壤理化指标、功能基因与氮素形态相关分析

对不同林型土壤理化指标、氮转化功能基因与氮素形态进行冗余分析(Redundancy Analysis,RDA),由图4(a)可知,amoA-AOA基因是3种林型中根际土壤影响最大的因子。此外, nosZ基因也对根际土壤影响显著。土壤pH与全氮呈正相关,各个功能基因与土壤电导率呈显著正相关,除nirS基因外,土壤pH与余下功能基因负相关,土壤pH与土壤全氮、铵态氮、硝态氮也都呈负相关。RDA两轴的累积贡献率分别为43.14%和23.02%。

由图4(b)非根际土壤的RDA结果表明,amoA -AOB基因是非根际土壤的最大影响因子。土壤电导率与全氮、硝态氮呈正相关,pH与碱解氮呈正相关,土壤铵态氮与硝态氮呈微弱正相关,与全氮、pH等呈负相关。土壤全氮、pH与除amoA-AOA外的其他基因呈正相关。RDA两轴的累积贡献率分别为47.23%和29.01%。

3 讨论

土壤理化指标会影响植物对氮素形态的吸收[23]。作为反映土壤酸碱度的指标,土壤pH对土壤肥力状况影响很大,本研究中,拜泉县樟子松纯林、落叶松纯林、樟子松×落叶松混交林这3种林型的土壤都呈酸性,除落叶松纯林外,其他林型树种根际与非根际土壤pH均差异显著(P<0.05),在纯林中,樟子松非根际的酸性高于根际,但混交林樟子松和落叶松根际的酸性程度都高于各自的非根际,见表2。有研究表明,不同林龄华北落叶松[24]以及马铃薯[25]根际土壤pH显著低于非根际(P<0.05),与本文混交林土壤pH结果一致。电导率是体现土壤含盐量的重要指标,土壤电导率可以直接反映出土壤混合盐的含量,从表2可知,落叶松纯林根际的土壤电导率达到(53.33±2.54) μS/cm,远高于其他土壤类别,说明其根际土壤含盐量很大,樟子松纯林土壤含盐量不高,而在混交林中,两树种根际的含盐量相互中和,维持在一个相似的水平,孙瀚等[26]研究表明,土壤盐分胁迫下其有机氮组成对黄河三角洲盐渍土壤肥力的形成具有重要作用,说明落叶松纯林土壤肥力受电导率的促进作用。本研究中,各林型间含水量无显著差异,这可能是由于本研究的取样时间处于土壤层春耕前期,天气较冷阶段,土层水分比较一致。

土壤中不同氮素形態在整个氮循环中不断进行着硝化、反硝化和固氮等过程,组成了农业生态系统的关键部分[27]。本研究中,樟子松纯林根际土壤铵态氮和硝态氮在不同林型中含量最低(图2),有试验表明[28-30],土壤硝态氮、铵态氮和pH与起固氮作用的nifH基因显著相关(P<0.05),土壤全氮和铵态氮含量与起反硝化作用的nosZ基因显著相关(P<0.05),本研究中,樟子松纯林根际的各项氮素形态都与其非根际有较大的差异,这可能是导致樟子松纯林土壤功能基因表达量相对较低的原因。拜泉县3种林型根际土壤中,混交林樟子松的全氮含量最高,与纯林相比,混交林两树种土壤全氮和铵态氮的含量均高于纯林土壤指标;非根际土壤的纯林中樟子松的土壤硝态氮含量较高,落叶松的土壤硝态氮含量较低,在混交林中,两树种土壤硝态氮的含量与樟子松和落叶松纯林相比分别呈下降和上升的变化,土壤碱解氮也有相似的变化趋势。有试验表明,适当在纯林中保留混生树种对改善林分结构、提高土壤肥力具有较好的促进作用,且能够提高林分质量[31-32],还有研究表明,混种模式可显著提升土壤的水分含量、铵态氮和硝态氮含量,降低土壤pH[33],这些都与本研究中混交林调控了各自树种纯林的土壤养分含量结果一致。BF49E160-7A68-46CF-AAAF-2FABB8E47933

土壤微生物分类结构已在众多研究中得到广泛调查,而通过定量分析功能基因可以更有效地测定土壤的微生物功能结构模式[34]。本研究RDA(图4)结果表明,amoA-AOA基因与amoA-AOB基因分别为研究地根际与非根际土壤影响最大的因子。郭俊杰等[27]的研究表明,amoA-AOB基因是施肥影响下氮循环功能微生物群落丰度变异最重要的基因,即施肥促进了硝化作用的产生,在研究地采样时附近农田已经施加了农家肥,这可能是这2种基因在林地里响应最大的原因,而根际土壤混交林的硝态氮和铵态氮含量均显著大于纯林(图2),也说明混交林根际土壤的硝化作用高于纯林。除樟子松纯林外,其他林型树种根际土壤的功能基因表达量均显著高于各自的非根际土壤(P<0.05)。在根际土壤中,樟子松纯林的amoA-AOA基因表达量较低,混交林两树种的该基因表达量相似且都高于各自纯林。无论根际、非根际土壤或不同林型,amoA-AOA表达量均显著高于amoA-AOB,如图3所示,在对青藏高原高寒湿地的研究中表明,AOB 和AOA 对硝化作用的相对贡献存在明显的季节差异,多数采样点中冬季 AOA 在硝化作用中占主导地位[35],本次采样时间温度较低,不是植物生长季,这可能是amoA-AOA表达量较高的原因。有关研究表明,nifH基因可以促进氮气的固定,从而形成NH+4[36],土壤nifH基因表达量越大,其铵态氮含量也应越高,及二者呈正相关,这与本研究根际土壤(图4(a))RDA分析结果一致。对6种基因拷贝数进行比较,无论根际与非根际土壤,除amoA-AOA基因的非根际部分外,落叶松林其他基因的拷贝数均高于樟子松,可以看出纯林中落叶松林的氮循环能力更强。

4 结论

(1)樟子松纯林、落叶松纯林、樟子松×落叶松混交林3种林型下各树种的根际土壤全氮含量均高于非根际,说明根际土壤比非根际土壤氮含量更高,混交林根际土壤的铵态氮、硝态氮含量均高于纯林,且落叶松高于樟子松,表明混交林会调控各自纯林的土壤氮素形态含量。

(2)不同农田防护林间土壤理化指标和功能基因都存在着显著差异,樟子松纯林根际土壤pH显著高于其他林型,落叶松纯林土壤电导率最高,混交林土壤容重显著大于纯林(P<0.05)。RDA结果表明,amoA基因是研究区土壤影响最大的因子,说明该地区土壤氮循环硝化作用较强。不同林型下,落叶松土壤氮转化功能基因拷贝数都较高,且落叶松林根际土壤的铵态氮硝态氮含量高于樟子松,说明樟子松纯林土壤活性低于落叶松。综上所述,拜泉县农田防护林型的适宜建设程度由大到小为:混交林、落叶松纯林、樟子松纯林。

【参 考 文 献】

[1]王学文,赵庆展,韩峰,等.机載多光谱影像语义分割模型在农田防护林提取中的应用[J].地球信息科学学报,2020,22(8):1702-1713.

WANG X W, ZHAO Q Z, HAN F, et al. Application of airborne multispectral image semantic segmentation model in farmland shelterbelt extraction[J]. Journal of Geo-Information Science, 2020, 22(8): 1702-1713.

[2]温宁,周慧,张红丽.农户农田防护林经营行为响应的影响因素研究:基于新疆1106份农户调查数据[J].林业经济,2021,43(2):71-83.

WEN N, ZHOU H, ZHANG H L. Research on influencing factors of farmers farmland shelterbelt management behavior response-based on 1106 survey data of farmers in Xinjiang[J]. Forestry Economics, 2021, 43(2): 71-83.

[3]王栋,肖辉杰,辛智鸣,等.不同配置农田防护林对田间土壤水分空间变异的影响[J].水土保持学报,2020,34(5):223-230.

WANG D, XIAO H J, XIN Z M, et al. Effects of different configurations of farmland shelterbelt system on spatital variation of soil moisture content[J]. Journal of Soil and Water Conservation, 2020, 34(5): 223-230.

[4]DENG R X, WANG W J, LI Y, et al. Analysis of changes in shelterbelt landscape in northeast China[J]. Applied Ecology and Environmental Research, 2019, 17(5): 11655-11668.

[5]高金辉,刘运伟,韩家永,等.小兴安岭刺五加群落植物组成及区系分析[J].森林工程,2021,37(6):39-46.

GAO J H, LIU Y W, HAN J Y, et al. Plant Composition and floristic analysis of Eleutherococcus senticosus communities in Xiaoxinganling[J]. Forest Engineering, 2021, 37(6): 39-46.

[6]温磊磊,王教河,任明,等.东北黑土区水土流失综合治理成效[J].中国水土保持,2021(6):4-7.BF49E160-7A68-46CF-AAAF-2FABB8E47933

WEN L L, WANG J H, REN M, et al. Effect of comprehensive control of soil and water loss in black soil area of northeast China[J]. Soil and Water Conservation in China, 2021(6): 4-7.

[7]阎合.中国东北地区杨树腐烂病时空流行特点与风险分析[D].北京:北京林业大学,2020.

YAN H. Spatio-temporal epidemic characteristics and risk analysis of poplar canker of Cytospora chrysosperma in northeast China[D]. Beijing: Beijing Forestry University, 2020.

[8]孙楠,张怡春,赵眉芳.长白落叶松人工林根系生物量及其垂直分布特征[J].森林工程,2021,37(6):17-24,67.

SUN N, ZHANG Y C, ZHAO M F. Root biomass and vertical distribution characteristicsof larch plantation[J]. Forest Engineering, 2021, 37(6): 17-24,67.

[9]肖巍.章古台地区农田防护林对风蚀的影响[J].防护林科技,2020(7):12-13,27.

XIAO W. Effect of farmland shelterbelt on soil wind erosion in the Zhanggutai region[J]. Protection Forest Science and Technology, 2020(7): 12-13, 27.

[10]DIWAKAR S K, ZAIDI S, KUMAR S, et al. Effect of land use systems on soil health in eastern region of Uttar Pradesh[J]. Indian Journal of Agricultural Sciences, 2021, 91(2): 647-650.

[11]ZHOU L, SUN Y J, SAEED S, et al. The difference of soil properties between pure and mixed Chinese fir (Cunninghamia lanceolata) plantations depends on tree species[J]. Global Ecology and Conservation, 2020, 22: e01009.

[12]LIU L Y, ZHANG L, PAN J, et al. Soil C-N-P pools and stoichiometry as affected by intensive management of Camellia oleifera plantations[J]. PLoS One, 2020, 15(9): e0238227.

[13]胡曉婧,刘俊杰,于镇华,等.东北黑土nirS型反硝化细菌群落和网络结构对长期施用化肥的响应[J].植物营养与肥料学报,2020,26(1):1-9.

HU X J, LIU J J, YU Z H, et al. Response of nirS-type denitrifier community and network structures to long-term application of chemical fertilizers in a black soil of northeast China[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(1): 1-9.

[14]刘增泰,赵学强,王嘉林,等.铝处理对不同耐铝水稻品种吸收铵态氮和硝态氮以及相关基因表达的影响[J].江西农业学报,2021,33(5):1-7.

LIU Z T, ZHAO X Q, WANG J L, et al. Effects of aluminum treatments on uptake of ammonium and nitrate and expression of related genes in different aluminum-tolerant rice varieties[J]. Acta Agriculturae Jiangxi, 2021, 33(5): 1-7.

[15]邵文山,李国旗.土壤酶功能及测定方法研究进展[J].北方园艺,2016(9):188-193.

SHAO W S, LI G Q. Research progress of soil enzymes function and its determination method[J]. Northern Horticulture, 2016(9): 188-193.

[16]丁令智,满秀玲,肖瑞晗.大兴安岭北部主要树种生长季根际土壤氮素含量特征[J].中南林业科技大学学报,2019,39(2):65-71,92.

DING L Z, MAN X L, XIAO R H. Characteristics of nitrogen content in rhizosphere soil of main tree species in northern part of Daxinganling during growing seasons[J]. Journal of Central South University of Forestry & Technology, 2019, 39(2): 65-71, 92.BF49E160-7A68-46CF-AAAF-2FABB8E47933

[17]吴晓生.不同林龄杉木根际和非根际土壤碳氮磷化学计量特征[J].林业勘察设计,2020,40(4):8-12.

WU X S. Stoichiometric characteristics of carbon, nitrogen and phosphorus in rhizosphere and non-rhizosphere soil of Cunninghamia lanceolata at different ages[J]. Forestry Prospect and Design, 2020, 40(4): 8-12.

[18]张军.黑土区防护林土壤质量评价及其土壤细菌多样性研究[D].哈尔滨:东北林业大学,2020.

ZHANG J. Evaluation of the soil quality and study on soil bacterial diversity of shelterbelts in the black soil region[D]. Harbin: Northeast Forestry University, 2020.

[19]李忠意,杨剑虹,程永毅,等.“土壤农化分析”实验教学的改革与探索[J].西南师范大学学报(自然科学版),2019,44(1):144-149.

LI Z Y, YANG J H, CHENG Y Y, et al. The reform and exploration on teaching of soil agrochemistry analysis experiment[J]. Journal of Southwest China Normal University (Natural Science Edition), 2019, 44(1): 144-149.

[20]韩小美,黄则月,程飞,等.望天树人工林根际土壤理化性质及微生物群落特征[J].应用生态学报,2020,31(10):3365-3375.

HAN X M, HUANG Z Y, CHENG F, et al. Physiochemical properties and microbial community characteristics of rhizosphere soil in Parashorea chinensis plantation[J]. Chinese Journal of Applied Ecology, 2020, 31(10): 3365-3375.

[21]FFIEDL J, CCARDENAS L M, TIMOTHY J C, et al. Measuring denitrification and the N2O:(N2O + N2) emission ratio from terrestrial soils[J]. Current Opinion in Environmental Sustainability, 2020, 47: 61-71.

[22]方文生.土壤熏蒸对氮循环功能微生物及N2O生成的影响与机制[D].北京:中国农业科学院,2019.

FANG W S. Effects and mechanisms of soil fumigation on nitrogen cycling microorganisms and N2O production[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019.

[23]湯丹丹,刘美雅,张群峰,等.不同氮素形态、pH对茶树元素吸收及有机酸含量影响[J].茶叶科学,2019,39(2):159-170.

TANG D D, LIU M Y, ZHANG Q F, et al. Effects of nitrogen form and root-zone pH on nutrient uptake and concentrations of organic anions in tea plants (Camellia sinensis)[J]. Journal of Tea Science, 2019, 39(2): 159-170.

[24]郭辉,唐卫平.不同林龄华北落叶松根际与非根际土壤酶和土壤微生物研究[J].生态环境学报,2020,29(11):2163-2170.

GUO H, TANG W P. Enzyme activity and microbial community diversity in rhizosphere and non-rhizosphere soil of Larix principis-rupprechtii[J]. Ecology and Environmental Sciences, 2020, 29(11): 2163-2170.

[25]葛应兰,孙廷.马铃薯根际与非根际土壤微生物群落结构及多样性特征[J].生态环境学报,2020,29(1):141-148.

GE Y L, SUN T. Soil microbial community structure and diversity of potato in rhizosphere and non-rhizosphere soil[J]. Ecology and Environmental Sciences, 2020, 29(1): 141-148.

[26]孙瀚,屈杰,王晓雯,等.黄河三角洲盐渍土有机氮组成及氮有效性对土壤含盐量的响应[J].中国生态农业学报(中英文),2021,29(8):1397-1404.BF49E160-7A68-46CF-AAAF-2FABB8E47933

SUN H, QU J, WANG X W, et al. The response of soil organic nitrogen fractions and nitrogen availability to salinity in saline soils of the Yellow River Delta[J]. Chinese Journal of Eco-Agriculture, 2021, 29(8): 1397-1404.

[27]郭俊杰,朱晨,刘文波,等.不同施肥模式对土壤氮循环功能微生物的影响[J].植物营养与肥料学报,2021,27(5):751-759.

GUO J J, ZHU C, LIU W B, et al. Effects of different fertilization managements on functional microorganisms involved in nitrogen cycle[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(5): 751-759.

[28]陈秀波.不同林型红松林土壤微生物群落组成和多样性及与理化性质关系[D].哈尔滨:东北林业大学,2020.

CHEN X B. Community composition and diversity of soil microorganisms in different forest types of Pinus koraiensis forest and their relationship with physicochemical properties[D]. Harbin: Northeast Forestry University, 2020.

[29]梁文光.氮對樟子松幼苗生长及生理特性的影响[J].林业科技情报,2020,52(4):58-60.

LIANG W G. Effects of nitrogen on the growth and physiological characteristics of Pinus slyvestris var. mongolica seedlings[J]. Forestry Science and Technology Information, 2020, 52(4): 58-60.

[30]王志波,季蒙,李银祥,等.氮添加与凋落物管理对华北落叶松人工林土壤化学性质的影响[J].西部林业科学,2021,50(4):26-32,40.

WANG Z B, JI M, LI Y X, et al. Effects of nitrogen addition and litter management on soil chemical properties of Larix principis-rupprechtii plantation[J]. Journal of West China Forestry Science, 2021, 50(4): 26-32, 40.

[31]陈才榜.毛竹纯林与竹阔混交林生长量比较研究[J].农村经济与科技,2020,31(21):71-72.

CHEN C B. Comparative study on growth of pure moso bamboo forest and mixed bamboo broad-leaved forest [J]. Rural Economy and Science-Technology, 2020, 31(21): 71-72.

[32]惠昊,关庆伟,王亚茹,等. 不同森林经营模式对土壤氮含量及酶活性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 151-158.

HUI H, GUAN Q W, WANG Y R, et al. Effects of different forest management modes on soil nitrogen content and enzyme activity[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(4): 151-158.

[33]张玲玲,李青梅,贾梦圆,等.覆盖作物对猕猴桃园土壤氨氧化微生物丰度和群落结构的影响[J].植物营养与肥料学报,2021,27(3):417-428.

ZHANG L L, LI Q M, JIA M Y, et al. Effects of cover crops on gene abundance and community structure of soil ammonia-oxidizing microorganism in a kiwifruit orchard[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(3): 417-428.

[34]CHENG J M, HAN Z J, CONG J, et al. Edaphic variables are better indicators of soil microbial functional structure than plant-related ones in subtropical broad-leaved forests[J]. Science of the Total Environment, 2021, 773: 145630.

[35]罗晴,甄毓,彭宗波,等.三亚河红树林表层沉积物中好氧氨氧化微生物的分布特征及潜在硝化速率[J].环境科学,2020,41(8):3787-3796.

LUO Q, ZHEN Y, PENG Z B, et al. Distribution and potential nitrification rates of aerobic ammonia-oxidizing microorganisms in surface sediments of mangrove in Sanya River[J]. Environmental Science, 2020, 41(8): 3787-3796.

[36]梁艳,明安刚,何友均,等.南亚热带马尾松-红椎混交林及其纯林土壤细菌群落结构与功能[J].应用生态学报,2021,32(3):878-886.

LIANG Y, MING A G, HE Y J, et al. Structure and function of soil bacterial communities in the monoculture and mixed plantation of Pinus massoniana and Castanopsis hystrix in southern subtropical China[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 878-886.BF49E160-7A68-46CF-AAAF-2FABB8E47933