激光熔化沉积CoCrNiNbW高熵合金耐磨及腐蚀性研究

2023-01-09 12:04贾彦军陈瀚宁张家奇雷剑波
表面技术 2022年12期
关键词:耐腐蚀性基材电化学

贾彦军,陈瀚宁,张家奇,雷剑波

激光熔化沉积CoCrNiNbW高熵合金耐磨及腐蚀性研究

贾彦军a,陈瀚宁b,张家奇c,雷剑波c

(天津工业大学 a.机械工程学院 b.计算机科学与技术学院 c.激光技术研究所,天津 300387)

解决Q235钢材料在实际应用中由于磨损、腐蚀导致使用寿命缩短问题,提升Q235钢表面的硬度、耐磨性和耐蚀性。利用激光熔化沉积技术在Q235钢表面制备无裂纹CoCrNiNbW高熵合金涂层。采用扫描电子显微镜、X射线光谱仪、光学显微镜表征其微观组织结构、元素分布和物相成分;采用显微硬度计、试块-试环摩擦磨损试验机分别测试高熵合金涂层和Q235钢的显微硬度和耐磨性能,研究涂层的强化机制和磨损机理;采用电化学工作站测试分析高熵合金涂层和Q235钢的电化学腐蚀行为,研究涂层的耐蚀性和腐蚀机制。CoCrNiNbW高熵合金涂层的微观组织主要由等轴晶组成,涂层中部和底部存在未熔化Nb和W颗粒,起强化相作用;主要物相由富含Co、Ni的FCC相及富含Nb的BCC相组成;高熵合金涂层的平均显微硬度为800HV0.2,约为基材的4倍;涂层的磨损机制以磨粒磨损为主,磨损率为2.315´10–5g·m–1,约为基材的1/5;在质量分数3.5%的NaCl溶液中,高熵合金涂层具有更好的耐腐蚀性,腐蚀电阻约为基材的8倍。高熵合金涂层的显微硬度、耐磨性和耐腐蚀性较Q235钢基材有很大提升。

激光熔化沉积;增材制造;高熵合金;耐磨性能;电化学腐蚀性能

高熵合金(High-entropy alloy,HEA)是Yeh等[1-2]提出的一种新型高强度合金,与传统合金不同,高熵合金由至少5种元素以等摩尔比或近似等摩尔比组成,每种元素的质量分数在5%~35%之间。根据传统合金化理论,合金的成分越多,形成金属间化合物的可能性就越大,但在很多高熵合金中并没有形成金属间化合物相,其相组成只是简单的FCC、BCC单相或双相固溶体组合[3],因此其微观结构分布相对均匀,且具有理想的力学性能和稳定结构[4-6]。由于高熵合金具有高硬度[7]、良好高温性能[8]、优异耐腐蚀性和抗氧化能力[9]等特点,在机械制造、航空航天、绿色加工和表面工程等重要领域具有巨大发展潜力和广阔应用前景。目前,高熵合金制备技术有固态加工[10-12]、液态加工[13-15]和薄膜沉积[16]等技术。由于这些技术的凝固速率较低,容易形成第二相化合物,而且制备的高熵合金涂层厚度较薄,与基体的结合性较差,因而无法满足高强度的应用场合。

激光熔化沉积技术(Laser melting deposition,LMD)是增材制造技术的一个分支,具有功率密度高、材料范围广、成型速度快、冷却速率高、热影响区小、熔覆层稀释率低,以及与基材能实现良好的冶金结合等特点[17]。采用LMD制备的高熵合金涂层既保证了其本身的优异性能,又能实现高熵合金与基体良好的冶金结合,这为在耐磨性与耐腐蚀性较差的普通材料上制备高熵合金层提供了可能。Shu等[18]使用激光熔覆在低碳钢基体上制备了CoCrNiSiBFe高熵合金涂层,并研究了在773 K时的高温磨损机理,结果表明,相比于柱状枝晶底层非晶层具有更好的耐磨性。许诠等[19]在45钢上制备了(CoCrFeNi)95Nb5高熵合金涂层,研究了其微观形貌、元素组成和耐腐蚀性。结果表明,涂层具备优异的耐腐蚀性,使用质量分数3.5%的NaCI溶液测量其动电位极化曲线时涂层表现出了明显的钝化行为。邱星武等[20]利用激光熔覆制备了Al2CrFeCoxCuNiTi高熵合金熔覆层,其组织主要由等轴晶构成,且发现有纳米尺度的球状粒子在等轴晶上分布,FCC+BCC1+BCC2+Laves相是其主要组成相,且FCC结构含量与Co元素含量成正相关,BCC结构含量则成负相关。

目前,高熵合金研究大多数集中在其组织及物相方面,关于激光熔化沉积高熵合金涂层耐磨性及耐腐蚀性机理的研究较少。采用激光熔化沉积方法制备了CoCrNiNbW高熵合金涂层,重点讨论了激光熔化沉积对涂层的微观组织、摩擦磨损性能和电化学腐蚀性能的影响,为相关研究提供理论依据和实验参考。

1 实验

1.1 实验材料与设备

基材为Q235(A3)钢,其成分见表1。在进行实验前,先使用激光清洗机(山东海富光子HFB-C50)对基材表面进行清洁,去除基材表面杂质,对表面进行粗化、整平,防止金属氧化物及杂质对实验效果产生影响。

表1 基材成分

采用Laserline-4000型激光器(德国,Laserline,光斑直径4 mm、最大功率4 400 W),在Q235钢表面制备多道单层CoCrNiNbW高熵合金熔覆层,其工艺参数见表2,实验流程见图1。

图1 实验流程

表2 试验工艺参数

1.2 显微结构表征

通过X射线衍射仪(XRD,日本理学D/MAX- 2500)对物相进行分析(Cu靶、加速电压40 kV、工作电流140 mA)。使用光学显微镜(Leica DVM6A)、扫描电子显微镜(ZEISS Sigma 300、配备X射线能谱仪EDS、加速电压15 kV),观察实验制备样品的宏观形貌、微观组织形貌和元素成分及分布。

1.3 性能测试

在室温条件下,使用M-2000型摩擦磨损试验机对涂层进行干滑动摩擦实验。具体实验参数见表3。使用精度为0.1 mg的天平对样品磨损前后的质量进行称重,根据公式计算材料的磨损率。磨损实验后收集磨屑,观察磨痕和磨屑的形貌,分析磨损类型和材料的耐磨性能。

表3 摩擦磨损实验参数

将待测试块截面研磨抛光后,采用显微硬度计(HXDG1000T,上海比目仪器有限公司)测量涂层显微硬度分布,测量时加载载荷为200 N,保持时间为10 s。从熔覆层垂直方向截面顶部开始测试,每个测试点相距100 μm,直至穿过基材热影响区。使用电化学分析仪(CHI-640型,上海辰华仪器有限公司)对CoCrNiNbW高熵合金熔覆层的耐腐蚀性能进行分析,电化学测试参数见表4。测试完得到其自腐蚀电位和腐蚀电流密度。使用软件对电化学交流阻抗谱进行分析,得到试样的电化学评价参数并建立相对应的等效电路。

表4 电化学测试参数

2 结果与讨论

2.1 组织及物相

高熵合金CoCrNiNbW涂层的XRD图谱见图2,可以发现涂层物相仅由FCC和BCC组成,未出现金属间化合物,这表明涂层在激光熔化沉积过程中发生了固溶体凝固[21]。FCC的3个衍射峰分别为44.68°、51.54°、75.98°,主要富含Co和Ni元素;BCC的2个衍射峰为64.87°和82.29°,主要富含Nb元素。

高熵合金涂层中部显微组织和元素分布见图3。由于激光的快速加热和冷却,其过冷度较大,因此会有大量晶核形成于熔池内部且未有足够的时间生长,从而形成细小的等轴晶,晶体晶粒尺寸普遍在10 μm以下,为涂层获得良好的性能提供了保证。涂层的组织致密、成分均匀,未发生明显的元素偏析现象,这可能是由于元素混合导致的高熵效应抑制了复杂金属间化合物的出现[22]。5种元素含量见表5。

图2 高熵合金CoCrNiNbW涂层的XRD图

图3 高熵合金CoCrNiNbW涂层中部的元素分布

表5 涂层中部元素含量分布表

在高熵合金涂层中存在未熔化的Nb和W颗粒,为了进一步研究这些颗粒周围元素的分布,对其进行EDS分析见图4—5,可以看出,未熔化颗粒周围元素分布均匀,未出现明显的元素偏析现象。

2.2 硬度

高熵合金CoCrNiNbW涂层截面沿深度方向的硬度分布曲线见图6。由图6可知,熔覆层的硬度有所波动,最大值为920HV0.2,平均值也达到了800HV0.2,约为基材Q235钢的4倍左右,这显著增加了基材的使用寿命。此外,涂层顶部的显微硬度略低于中部和底部,这是由于在底部和中部未熔化的Nb和W颗粒较多,扩散分布在基体中起到了强化相作用。

2.3 摩擦磨损性能

涂层与基材的磨损数据见图7。由7a可知,样块的磨损分为3个阶段,首先是初期磨损阶段,之后进入正常磨损和剧烈磨损阶段。在初期磨损过程中,合金表面凹凸不平,对磨环与磨损表面呈现为点接触或者线接触,因此局部应力大。在磨损时间4 min之前,摩擦因数在对磨环与合金试样接触时快速上升,之后随着点接触和线接触逐渐变为面接触而不断下降。在正常磨损阶段,磨损表面粗糙度明显降低,磨损量与磨擦因数都趋于平缓,接触面随磨损时间缓慢扩大,摩擦因数随之缓慢上升。在摩擦反复进行下,摩擦副表面会产生一层冷加工硬化层,导致表面硬度增加,因此磨损速率进一步减慢。

图4 Nb颗粒周围元素分布

图5 W颗粒周围元素分布

图6 高熵合金CoCrNiNbW硬度曲线

式中:为磨损量;为对磨环宽直径;为对磨环转动圈数。

磨损后表面形貌见图8,可以看出,犁沟与剥落坑是磨损表面典型形貌。当涂层的微凸起与对磨环接触时,局部应力使凸起与对磨环发生焊合,在相对运动和剪切力作用下,焊合区域被剪切或撕裂,在磨损表面形成剥落坑。被剪切的焊合区域、涂层中硬质相及未掉落磨屑会对涂层表面产生微切削作用,进而形成凹槽及犁沟。由图8c—d可知,高熵合金磨损表面出现许多灰白色区域,且该区域同其他磨损表面相比表面更平整,犁沟深度也降低。

为了进一步分析高熵合金的磨损机理,对磨屑的形貌和元素组成进行了分析,结果见图9。高熵合金磨屑尺寸之间差异大,以块状和粉末状分布为主,进一步说明了磨损机制主要为磨粒磨损与黏着磨损[23-24]。对堆块状磨屑与粉末状磨屑的元素分布进行对比,2种磨屑中都以Fe、Cr元素为主,这是由于在涂层与对磨环的接触中,对磨环表面也会磨损变为磨屑。在块状磨屑中W、Nb元素明显增多,质量分数分别为11.38%、5.7%;粉末状磨屑中氧含量较高(质量分数32.4%)。在空气环境中,由于摩擦升温及表面活化能改变,涂层表面生成一层具有自修复性的润滑氧化膜,即发生了氧化磨损[24]。当发生黏着磨损时,在较大尺寸的剥落中含有部分基体,直接落下形成的磨屑中O含量较低,而未掉落的剥落经过三体摩擦进一步被研磨,原始剥落的比表面积增加,与O2反应更加充分,因此在粉末状磨屑中氧含量更多。

图7 涂层与基材磨损数据

图8 磨损表面形貌

图9 磨屑形貌及其元素分布

2.4 电化学腐蚀性能

在室温下用质量分数3.5%的NaCl溶液作为电解液,测试基材(Q235)和高熵合金样品的电化学腐蚀性为。2种样品的动电位极化曲线见图10。从图10可知,随着阳极区域的腐蚀电压增加,2种样品的腐蚀电流都明显增大,并且在阳极区域存在明显钝化阶段。极化电阻与材料的耐腐蚀性能息息相关,极化电阻愈大,说明材料耐腐蚀性越好[25]。自腐蚀电阻计算公式见式(2)—(3)。从动电位极化曲线中计算得标准腐蚀参数见表6。

图10 基材和CoCrNiNbW的动电位极化曲线

表6 极化曲线标准电极腐蚀参数

由表6可知,高熵合金的自腐蚀电位为–0.840 V,自腐蚀电流为0.912mA×cm–2,约为基材的75%,这表明CoCrNiNbW的腐蚀倾向小,耐腐蚀性优异。

高熵合金和基材的交流阻抗谱见图11。Nyquist曲线代表的容抗弧半径越大,材料的耐腐蚀性能越好[26]。由图11可知,高熵合金的容抗弧要明显大于基材(Q235)的容抗弧,这与动电位极化曲线结果一致。交流阻抗谱的Bode阻抗图和Bode相角图见图11b—c。Bode图由低频区、中频区和高频区组成,低频区对应阻抗模量为103Ω·cm2,表明在对应电化学界面处存在钝化膜,具有高电容的特性;中频区域对应于Bode图的相位角,高熵合金的相位角接近–70°;高频区域的斜率接近于0,但与电阻关系不大。从Bode相位图可以看出,在高频区相位角下降较为明显,说明了溶液电阻在高频区占有主导地位。而在低频区下降速率明显减缓但仍处于下降过程,表明了试样表面产生了一层致密的钝化膜[27]。一般来说,材料的阻抗模量值越大、相位角最大值越大,材料的耐腐蚀性越好。

CoCrNiNbW及基材Q235的等效电路模型见图12,其电气参数见表7。激光增材制造的CoCrNiNbW电荷转移电阻ct(4.206´105Ω×cm–2)为基材Q235钢的2.4倍,这表明CoCrNiNbW的腐蚀阻力较大,腐蚀速率较慢,其耐腐蚀性能良好。为样品表面氧化膜的致密度,CoCrNiNbW的弥散指数1、2分别为0.856 9和0.884 3,高于Q235钢(0.829 3和0.657 4)。氧化膜的致密度代表材料阻碍腐蚀的能力,说明CoCrNiNbW合金表面形成了更加致密的氧化膜。

图11 涂层与基材在质量分数3.5% NaCl溶液中EIS结果

图12 等效模拟电路

表7 等效模拟电路的电气参数

3 结论

采用激光熔化沉积方法在Q235钢表面制备了CoCrNiNbW高熵合金涂层,对其微观组织结构、显微硬度、耐磨性能和电化学腐蚀性能进行了测试和分析。

1)CoCrNiNbW高熵合金涂层的组织主要由等轴晶组成,物相主要由富含Co、Ni的FCC相和富含Nb的BCC相组成。

2)CoCrNiNbW高熵合金涂层的显微硬度最高值为920HV0.2,平均值为800HV0.2,约为基材的4倍。

3)与基材相比,高熵合金涂层的耐磨性显著提升,以磨粒磨损为主,磨损率约为基材的1/5。

4)与基材相比,高熵合金涂层的耐电化学腐蚀性能显著提升,腐蚀电阻为基材的8倍.

[1] YEH J W, CHEN Y L, LIN S J, et al. High-entropy Alloys–a New Era of Exploitation[J]. Materials Science Forum. Trans Tech Publications Ltd, 2007, 560: 1-9.

[2] JOO S H, KATO H, JANG M J, et al. Tensile Defor­mation Behavior and Deformation Twinning of An Equi­molar CoCrFeMnNi High-entropy Alloy[J]. Materials Science and Engineering: A, 2017, 689: 122-133.

[3] SENKOV O N, SCOTT J M, SENKOVA S V, et al. Microstructure and Room Temperature Properties of A High-entropy TaNbHfZrTi Alloy[J]. Journal of Alloys and Compounds, 2011, 509 (20): 6043-6048.

[4] YEH J W, CHEN S K, LIN S J, et al. Nanostructured High-entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303.

[5] LU Z P, WANG H, CHEN M W, et al. An Assessment on the Future Development of High-Entropy Alloys: SummaryFrom a Recent Workshop[J]. Intermetallics, 2015, 66: 67-76.

[6] MIRACLE D B, SENKOV O N. A Critical Review of High Entropy Alloys and Related Concepts[J]. Acta Materialia, 2017, 122: 448-511.

[7] XIAO J K, TAN H, CHEN J, et al. Effect of Carbon Content on Microstructure, Hardness and Wear Resistance of CoCrFeMnNiCx High-entropy Alloys[J]. Journal of Alloys and Compounds, 2020, 847: 156533.

[8] CHEN L, ZHOU Z, TAN Z, et al. High Temperature Oxi­da­tion Behavior of Al0. 6CrFeCoNi and Al0. 6CrFeCoNiSi0.3 High Entropy Alloys[J]. Journal of Alloys and Com­pounds, 2018, 764: 845-852.

[9] YE F, JIAO Z, YAN S, et al. Microbeam Plasma Arc Remanufacturing: Effects of Al on Microstructure, Wear Resistance, Corrosion Resistance and High Temperature Oxidation Resistance of AlxCoCrFeMnNi High-entropy Alloy Cladding Layer[J]. Vacuum, 2020, 174: 109178.

[10] ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and Properties of High-Entropy Alloys[J]. Progress in Materials Science, 2014, 61: 1-93.

[11] ALCALA M D, REAL C, FOMBELLA I, et al. Effects of Milling Time, Sintering Temperature, Al Content on The Chemical Nature, Microhardness and Microstructure of Mechanochemically Synthesized FeCoNiCrMn High Entropy Alloy[J]. Journal of Alloys and Compounds, 2018, 749: 834-843.

[12] JOO S H, KATO H, JANG M J, et al. Structure and Properties of Ultrafine-Grained CoCrFeMnNi High-entropy Alloys Produced by Mechanical Alloying and Spark Plasma Sintering[J]. Journal of Alloys and Compounds, 2017, 698: 591-604.

[13] CHEN Y Y, DUVAL T, HUNG U D, et al. Microstructure and Electrochemical Properties of High Entropy Alloys—a Comparison with Type-304 Stainless Steel[J]. Corrosion Science, 2005, 47(9): 2257-2279.

[14] BHATTACHARJEE P P, SATHIARAJ G D, ZAID M, et al. Microstructure and Texture Evolution During Annea­ling of Equiatomic CoCrFeMnNi High-entropy Alloy[J]. Journal of Alloys and Compounds, 2014, 587: 544-552.

[15] SHUN T T, DU Y C. Age hardening of the Al0. 3CoCrFeNiC0. 1 High Entropy Alloy[J]. Journal of Alloys and Compounds, 2009, 478(1/2): 269-272.

[16] LIAO W, LAN S, GAO L, et al. Nanocrystalline High- entropy Alloy (CoCrFeNiAl0.3) Thin-Film Coating by Magnetron Sputtering[J]. Thin Solid Films, 2017, 638: 383-388.

[17] 郝文俊, 孙荣禄, 牛伟, 等. 激光熔覆CoCrFeNiSix高熵合金涂层的组织及性能[J]. 表面技术, 2021, 50(5): 87-94.

HAO Wen-jun, SUN Rong-lu, NIU Wei, et al. Microstruc­ture and Properties of Laser Cladding CoCrFeNiSix High- entropy Alloy Coating[J]. Surface Technology, 2021, 50(5): 87-94

[18] SHU F Y, WU L, ZHAO H Y, et al. Microstructure and High-temperature Wear Mechanism of Laser Cladded CoCrBFeNiSi High-entropy Alloy Amorphous Coating[J]. Materials Letters, 2018, 211: 235-238.

[19] 许诠, 黄燕滨, 刘谦, 等. 激光熔覆法制备(CoCrFeNi)_ (95)Nb_5高熵合金涂层的表征与耐蚀性研究[J]. 电镀与涂饰, 2019, 38(11): 536-541.

XU Quan, HUANG Yan-bin, LIU Qian, et al. Charac­teri­zation and Corrosion Resistance Study of Laser-clad (CoCrFeNi)95Nb5High-entropy Alloy Coating[J]. Elec­trop­lating & Finishing, 2019, 38(11): 536-541.

[20] 邱星武, 张云鹏, 刘春阁. 激光熔覆法制备Al2CrFeCoxCuNiTi高熵合金涂层的组织与性能[J]. 粉末冶金材料科学与工程, 2013(5): 735-740.

QIU Xing-wu, ZHANG Yun-peng, LIU Chun-ge. Micros­tructure and Properties of Al2CrFeCoxCuNiTi High-entropy Alloy Coating Prepared by Laser Cladding[J]. Materials Science and Engineering of Powder Metallurgy, 2013, 18(5): 735-740.

[21] ZHANG J, LI X, ZHANG Y, et al. Sluggish Dendrite Growth in an Undercooled High Entropy Alloy[J]. Intermetallics, 2020, 119: 106714.

[22] CUI P, LI W, LIU P, et al. Effects of Nitrogen Content on Microstructures and Mechanical Properties of (AlCrTiZrHf) N High-entropy Alloy Nitride Films[J]. Journal of Alloys and Compounds, 2020, 834: 155063.

[23] CUI Y, SHEN J, MANLADAN S M, et al. Wear Resis­tance of FeCoCrNiMnAlx High-entropy Alloy Coatings at High Temperature[J]. Applied Surface Science, 2020, 512: 145736.

[24] WANG J, ZHANG B, YU Y, et al. Study of High Tem­perature Friction and Wear Performance of (CoCrFeMnNi) 85Ti15 High-entropy Alloy Coating Prepared by Plasma Cladding[J]. Surface and Coatings Technology, 2020, 384: 125337.

[25] 李彦洲, 石岩. 铝合金表面激光沉积AlCrFeCoNiCu涂层的组织及耐蚀性能[J]. 中国光学, 2019, 12(2): 344-354.

LI Yan-zhou, SHI Yan. Microstructure and Corrosion Resistance of AlCrFeCoNiCu High-entropy Coating by Laser Deposition on an Aluminum Alloy[J]. Chinese Optics, 2019, 12(2):344-354.

[26] 黄杰, 贺定勇, 杜开平, 等. FeCrNiMo激光熔覆层组织与电化学腐蚀行为研究[J]. 表面技术, 2020, 49(12): 228-234.

HUANG Jie, HE Ding-yong, DU Kai-ping, et al. Micros­tructure and Electrochemical Corrosion Behavior of FeCrNiMo Layer Fabricated by Laser Cladding[J]. Surface Technology, 2020, 49(12): 228-234

[27] YANG X, DONG X, LI W, et al. Effect of Solution and Aging Treatments on Corrosion Performance of Laser Solid Formed Ti-6Al-4V Alloy in a 3.5 wt.% NaCl Solu­tion[J]. Journal of Materials Research and Technology, 2020, 9(2): 1559-1568.

Research on Wear Resistance and Electrochemical Corrosion Properties of CoCrNiNbW High Entropy Alloy by Laser Melting Deposited

a,b,c,c

(a. School of Mechanical Engineering, b. School of Computer Science and Technology Tiangong University, c. Laser Technology Institute, Tiangong University,Tianjin 300387, China)

The service life of Q235 steel is shortened due to wear and corrosion in practical application. It is necessary to improve the microhardness, wear resistance and corrosion resistance of Q235 steel surface. High entropy alloy (HEA) is a new type of high strength alloy with relatively uniform microstructure distribution and ideal mechanical properties and stable structure. Due to the characteristics of high hardness, good high temperature performance, excellent corrosion resistance and oxidation resistance, HEA is widely used in machinery manufacturing, aerospace, green processing surface engineering and other important fields which have great development potential and broad application prospects. A crack-free CoCrNiNbW high-entropy alloy coating was fabricated on the surface of Q235 steel by laser melting deposition technology in this artical.

The substrate is Q235 steel. The surface is cleaned by laser cleaning machine (Shandong Haifu photon HFB-C50) to remove impurities on the substrate surface and prevent metal oxides and impurities from affecting the experimental effect.Apply the Laserline-4000 laser in the CoCrNiNbW cladding experiment. The optimum process parameters were determined after optimization. The moving speed of the spot is 8 mm/s during the cladding process; the laser power of the multi-pass cladding is 720 W, and the overlap between the two adjacent passes is 50%.The phase was analyzed by X-ray diffractometer (XRD) (Japanese science D / max-2500) (Cu target, acceleration voltage 40 kV, working current 140 mA). Optical microscope (Leica dvm6a), scanning electron microscope (Zeiss sigma 300) and X-ray spectrometer were used (EDS), accelerating voltage 15 kV). The macro morphology, microstructure morphology, composition and distribution of elements of the samples were observed. The dry sliding friction test of the coating was carried out by M-2000 friction and wear tester at room temperature. The material of the grinding ring is GCr15, the load is set to 120 N, and the wear time is 1 hour. After the wear experiment, collect the wear debris, observe the morphology of wear marks and wear debris, and analyze the wear type and wear resistance of the material. The electrochemical workstation (CHI-640) test was used to analyze the electrochemical corrosion behavior of the high-entropy alloy coating and Q235 steel. The electrochemical impedance spectroscopy, self corrosion potential and corrosion current density were analyzed by software, the electrochemical evaluation parameters of the samples were obtained, and the corresponding equivalent circuit was established.

The microstructure of the CoCrNiNbW high-entropy alloy coating is mainly composed of equiaxed crystals, and there are unmelted Nb and W particles in the middle and bottom of the coating, which play the role of strengthening phase; The main phases are composed of the FCC phase rich in Co, Ni and the BCC phase rich in Nb. The average microhardness of the high-entropy alloy coating is 800HV0.2, which is about four times that of the substrate material. The wear mechanism is mainly abrasive wear, and the wear rate is 2.315×10–5g·m–1, which is about 1/5 of the substrate material. In 3.5 wt.% NaCl solution, high-entropy alloy coating has better corrosion resistance, and the corrosion resistance is about 8 times that of the substrate. The microhardness, wear resistance, and corrosion resistance of the high-entropy alloy coating are greatly improved compared to the Q235 steel substrate.

laser melting deposition; additive manufacturing; high-entropy alloys; wear resistance; electrochemical corrosion performance

V261.8

A

1001-3660(2022)12-0350-08

10.16490/j.cnki.issn.1001-3660.2022.12.036

2021–08–01;

2022–01–05

2021-08-01;

2022-01-05

贾彦军(1981—),男,硕士,高级实验师,主要研究方向为金属材料表面强化和激光材料加工。

JIA Yan-jun (1981-), Male, Master, Senior experimentalist, Research focus: surface strengthening of metal materials and processing of laser materials.

陈瀚宁(1979—),男,博士,教授,主要研究方向为激光材料加工、智能制造。

CHEN Han-ning (1979-), Male, Doctor, Professor, Research focus: processing of laser materials and intelligent manufacturing.

贾彦军, 陈瀚宁, 张家奇, 等.激光熔化沉积CoCrNiNbW高熵合金耐磨及腐蚀性研究[J]. 表面技术, 2022, 51(12): 350-357.

JIA Yan-jun, CHEN Han-ning, ZHANG Jia-qi, et al. Research on Wear Resistance and Electrochemical Corrosion Properties of CoCrNiNbW High Entropy Alloy by Laser Melting Deposited[J]. Surface Technology, 2022, 51(12): 350-357.

猜你喜欢
耐腐蚀性基材电化学
为航空航天领域提供高端基材
真空助力器带制动主缸总成耐腐蚀性试验
SiO2包覆羰基铁粉及其涂层的耐腐蚀性能
建筑表皮中超薄基材的应用分析
电化学中的防护墙——离子交换膜
纳米材料在电化学免疫传感器中的应用
电化学基础测试题
关于量子电化学
HVOF制备铁基非晶涂层及其耐磨耐腐蚀性能
KD383:物流防盗印刷袋