缝洞型碳酸盐岩凝析气藏注水开发物理模拟研究

2014-07-19 11:49松,郭
石油实验地质 2014年5期
关键词:凝析气缝洞凝析油

彭 松,郭 平

(“油气藏地质及开发工程”国家重点实验室,西南石油大学,成都 610500)

缝洞型碳酸盐岩凝析气藏注水开发物理模拟研究

彭 松,郭 平

(“油气藏地质及开发工程”国家重点实验室,西南石油大学,成都 610500)

与一般砂岩凝析气藏不同,缝洞型碳酸盐岩凝析气藏发育有大小不同、形状各异的裂缝和孔洞,使其具有非均质性强,流体流动规律复杂等特征。如何提高该类气藏的采收率是值得研究的问题。技术成熟的注水技术具有开发成本低、水气流度比好、水驱波及效率高等优点。以塔中86井为例,采用露头碳酸盐岩经过人工技术制成全直径缝洞型岩心,在原始地层条件下(140.6 ℃,58 MPa)完成注水开发物理模拟实验。结果表明,采用注水保压方式开发高含凝析油的缝洞型碳酸盐岩凝析气藏效果较好;凝析油的采收率受缝洞连通方式、缝洞充填与否、压力保持水平等因素的影响。

缝洞型碳酸盐岩;凝析气藏;高含凝析油;注水;高温高压;全直径岩心;物理模拟

缝洞型碳酸盐岩凝析气藏是经多期构造运动与古岩溶共同作用形成的一种特殊类型的气藏,其储集空间以缝洞和裂缝—孔洞为主,具有构造复杂、储层非均质性强、双孔隙网络及渗流规律复杂等特征,是当前最复杂特殊的气藏之一。如何提高缝洞型碳酸盐岩凝析气藏(尤其高含凝析油时)的采收率是一个值得研究的问题。注水作为一项成熟的技术,具有开发成本低、水气流度比好、水驱波及效率高等优点,国内外诸多学者针对注水开发砂岩凝析气藏[1-9]及缝洞型碳酸盐岩油藏[10-25]做过一系列研究,但未涉及到高含凝析油的缝洞型碳酸盐岩凝析气藏。故本文以塔中86井(凝析油含量533 g/m3,地层温度140.6 ℃,地层压力58 MPa,露点压力55.4 MPa,最大反凝析液量压力31 MPa)为例设计并完成了缝洞型碳酸盐岩凝析气藏注水开发物理模拟实验。本次研究填补了这方面的空白,取得的研究成果对于缝洞型碳酸盐岩凝析气藏的高效开发具有一定的指导意义。

图1 全直径岩心实验流程

1 实验条件

1.1 实验装置

本次实验在高温高压全直径岩心驱替装置上完成,实验流程如图1所示。

1.2 岩心制备

由于缝洞型储层的重点研究对象是缝和洞,对基质要求较低,且实际取得的全直径岩心通常不具有缝洞代表性,达不到实验要求,故采用野外取来的碳酸盐岩露头按文献[26]中的方法制作缝洞型岩心。首先选择一块边长30 cm左右的方块碳酸盐岩岩心,进行人造自然单缝,使缝面大致平行于方块的任意一条棱且贯穿整块岩心;然后用直径为4 in的钻头钻取全直径岩心,长度10~25 cm,保持缝尽量位于全直径岩心中央;最后根据实际情况对全直径岩心内部进行造洞。本次实验研究制作的岩心如图2所示。

图2 制成的缝洞型全直径岩心照片长度:11.117 cm;直径:9.965 cm;孔隙度:16.83%;渗透率:48.26×10-3 μm2

1.3 流体制备

参照行业标准SY/T5543—2002,按凝析油含量533 g/m3、地层温度140.6 ℃、露点压力55.4 MPa,采用现场取得的塔中86井的油样及气样配制凝析气。地层水根据现场分析资料在室内自行配制,总矿化度为137 900 mg/L,水型为CaCl2型。

2 实验内容

基于未填砂及填砂(模拟孔洞被外来固相介质充填)的人造缝洞岩心设计了如下9组实验:

(1)衰竭实验4组(未填砂及填砂时水平衰竭、垂直衰竭各1组):衰竭到10 MPa(废弃地层压力);

(2)水平水驱实验3组(保持露点压力注水,未填砂和填砂各1组;保持最大反凝析液量压力注水,岩心未填砂1组):岩心水平夹持,压力衰竭到露点压力(最大反凝析液量压力)时开始注水,水突破后不出油结束注水,最后衰竭到10 MPa;

(3)垂直水驱实验2组(未填砂和填砂各1组):岩心垂直夹持,上部采气,压力衰竭到最大反凝析液量压力时开始从下部注水,水突破后不出油结束注水,最后衰竭到10 MPa。

3 实验结果及分析

图3及表1中的数据显示:(1)注水开发时的凝析油最终采出程度远高于衰竭开发时。因为衰竭开发过程中,大量析出的凝析油滞留于孔洞底部无法采出,致使凝析油采出程度低;(2)注水开发时,绝大部分凝析油是在注水突破前采出的;(3)虽然注水开发时的凝析油采出程度整体较高,但是不同实验条件下的凝析油最终采出程度有着较大差别。下面就注水开发缝洞型碳酸盐岩凝析气藏时影响凝析油采收率的因素做分析。

图3 凝析油采出程度与地层压力的关系曲线

实验填砂与否岩心夹持方式凝析油采出程度/%注水前衰竭注水保压衰竭至10MPa水平衰竭垂直衰竭保持露点压力(55.4MPa)注水保持最大反凝析液量压力(31MPa)注水未填砂水平15.95填砂水平16.44未填砂垂直14.64填砂垂直15.55未填砂水平1.6672.679.95填砂水平1.555.2761.39未填砂水平11.0955.3357.45未填砂垂直10.8363.0563.05填砂垂直10.9950.0452.99

3.1 注水越早凝析油采收率越高

表1中数据显示,未填砂岩心水平夹持时,保持55.4 MPa(露点压力)注水时的凝析油采出程度比保持31 MPa(最大反凝析液量压力)注水时高17.27%。从图4中可看出,保持露点压力注水过程中,无凝析油析出,注入多少水就驱替出多少体积的凝析气,生产气油比维持在原始气油比水平,凝析油采出程度与累积注水量间呈现较好的线性关系。而保持最大反凝析液量压力注水之前,反凝析出的油量达到最大值并滞留于孔洞的底部,气相中的凝析油含量减少,当液面抬升至水平缝面之前凝析油产量低,采出程度低;累积注水0.4 HCPV后,析出的凝析油被抬升至水平缝面后沿裂缝通道采出,产油量迅速升高,当注水突破后油气产量急剧下降直至不出油,较为复杂的油气水三相渗流使得其凝析油采收率相对较低。上述分析表明,越早注水,地层压力保持水平越高,凝析出的油量越少,凝析气中的凝析油含量就越高,最终采出程度也越高。

3.2 缝洞垂直连通时凝析油采收率相对较高

图5表明,保持最大反凝析液量压力注水时,岩心垂直夹持(缝洞垂直连通)时的凝析油采出程度高于水平夹持(缝洞水平连通)时,这是由于缝洞水平连通时,裂缝平面将洞分割成上(0.4 HCPV)、下(0.6 HCPV)两部分,当注入水的液面升至裂缝平面后会突破(累积注水0.7 HCPV),注入水只占据了缝面下部的孔洞空间,而缝面上部的洞中仍聚集有凝析气,即俗称的“阁楼气”;当缝洞垂直连通时,受重力分异作用影响,注入水在洞底部聚积,随着注水量增加,油相逐渐往洞顶移动,气相也不断被驱出,最终注入水占据了0.9 HCPV的缝洞空间,故其凝析油采出程度相对较高。上述分析表明,缝洞连通方式会对注水效果产生一定的影响,缝洞垂直连通时,注水突破前累积注入水量较高,水驱波及体积大,凝析油采出程度相对较高。

图4 不同压力下的气油比及产量对比岩心未填砂

图5 不同缝洞连通方式注水实验气油比及产量对比

图6 填砂与未填砂岩心注水实验对比曲线

3.3 缝洞充填后凝析油采收率有所降低

从图6中可清晰看出,缝洞岩心填砂后各注水阶段的产油量均低于未填砂时,其凝析油采出程度也相应较低。分析认为缝洞岩心填砂后,非连续的洞变成了连续多孔介质,气、水的流体性质差异使得注入水容易在连续多孔介质中渗流,并将部分凝析气封存在孔隙中;其次,岩心填砂后表面积增大,从而增加了多相渗流阻力,所以相同注水条件下,填砂岩心的凝析油采出程度不及未填砂岩心。

4 结论

(1)与衰竭开发相比,注水开发缝洞型碳酸盐岩凝析气藏时的凝析油采出程度高、开发效果较好。

(2)缝洞垂直连通时,水驱波及体积大,凝析油采出程度相对较高。

(3)地层压力越高时注水,凝析油采收率越高。

(4)孔洞被充填时,凝析油采收率有所降低。

[1] Matthews J D,Hawes R I,Hawkyard I R.Feasibility studies of waterflooding gas-condensate reservoirs[J].Journal of Petroleum Technology,1988,40(8):1049-1056.

[2] Henderson G D,Danesh A,Peden J M.An experimental investigation of waterflooding of gas condensate reservoirs and their subsequent blow down[J].Journal of Petroleum Science and Engineering,1992,8(1):43-58.

[3] Fishlock T P,Probert C J.Waterflooding of gas-condensate reservoirs[J].SPE Reservoir Engineering,1996,11(4):245-251.

[4] El-Banbi A H,Aly A M,Lee W J,et al.Investigation of waterflooding and gas cycling for developing a gas-condensate reservoir[R].SPE 59772,2000.

[5] 程远忠,刘立平,李国江,等.板桥废弃凝析气藏注水提高采收率研究[J].天然气地球科学,2003,14(4):298-301.

Cheng Yuanzhong,Liu Liping,Li Guojiang,et al.The research of banqiao abandoned condensated oil and gas field by water injection[J].Natural Gas Geoscience,2003,14(4):298-301.

[6] 郭平,李海平,程远忠,等.废弃凝析气藏注污水提高采收率室内实验及现场应用[J].天然气工业,2003,23(5):76-79.

Guo Ping,Li Haiping,Cheng Yuanzhong,et al.In-house experiment and field application for abandoned condensate gas reservoirs to improve recovery ratio by injecting waste water[J].Natural Gas Industry,2003,23(5):76-79.

[7] 汪周华,郭平,孙良田,等.废弃凝析气藏注水开发可行性研究[J].西安石油大学学报:自然科学版,2006,21(1):29-31.

Wang Zhouhua,Guo Ping,Sun Liangtian,et al.Research of the feasibility of exploiting abandoned condensate gas reservoir by water injection[J].Journal of Xi′an Shiyou University:Natural Science Edition,2006,21(1):29-31.

[8] 吴克柳,李相方,许寒冰,等.考虑反凝析的凝析气藏水侵量计算新方法[J].特种油气藏,2013,20(5):86-88.

Wu Keliu,Li Xiangfang,Xu Hanbin,et al.Consider reverse condensate of condensate gas reservoir water influx calculation methods[J].Special Oil & Gas Reservoirs,2012,20(5):86-88.

[9] 周宗明,张贤松,李保振,等.实验设计法在凝析气藏后期注水开发方案设计中的应用[J].天然气工业,2010,30(8):29-33.

Zhou Zongming,Zhang Xiansong,Li Baozhen,et al.An efficient experimental design of water flooding in gas condensate reservoirs[J].Natural Gas Industry,2010,30(8):29-33.

[10] Li Z Y,Pan L,Cao F.Waterflooding development of fracture-cave carbonate reservoir[J].Petroleum Science and Technology,2013,31(10):1027-1039.

[11] 康志宏.缝洞型碳酸盐岩油藏水驱油机理模拟试验研究[J].中国西部油气地质,2006,2(1):87-90.

Kang Zhihong.Principium experiment of oil seepage driven by water in fracture and vug reservoir of carbonate rocks[J].West China Petroleum Geosciences,2006,2(1):87-90.

[12] 李巍,侯吉瑞,丁观世,等.碳酸盐岩缝洞型油藏剩余油类型及影响因素[J].断块油气田,2013,20(4):458-461.

Li Wei,Hou Jirui,Ding Guanshi,et al.Remaining oil types and influence factors for fractured-vuggy carbonate reservoir[J].Fault-Block Oil & Gas Field,2013,20(4):458-461.

[13] 王禹川,王怒涛,唐刚,等.哈拉哈塘地区缝洞型碳酸盐岩油藏单井生产特征[J].特种油气藏,2012,19(2):87-89.

Wang Yuchuan,Wang Nutao,Tang Gang,et al.Research on single well production performance for fractured-vuggy carbonate reservoirs[J].Special Oil & Gas Reservoirs,2012,19(3):87-89.

[14] 李俊,彭彩珍,王雷,等.缝洞型碳酸盐岩油藏水驱油机理模拟实验研究[J].天然气勘探与开发,2008,31(4):41-44,84.

Li Jun,Peng Caizhen,Wang Lei,et al.Simulation experiment of water-displacing-oil mechanism in fractured-cavity carbonate oil reservoirs[J].Natural Gas Exploration & Development,2008,31(4):41-44,84.

[15] 荣元帅,黄咏梅,刘学利,等.塔河油田缝洞型油藏单井注水替油技术研究[J].石油钻探技术,2008,36(4):57-60.

Rong Yuanshuai,Huang Yongmei,Liu Xueli,et al.Single well water injection production in Tahe fracture-vuggy reservoir[J].Petroleum Drilling Techniques,2008,36(4):57-60.

[16] 张洁,孙金声,张绍云,等.裂缝性碳酸盐岩油藏流体流动新模型[J].断块油气田,2013,20(5):623-626.

Zhang Jie,Sun Jinsheng,Zhang Shaoyun,et al.A new model of fluid flow in fractured carbonate reservoir[J]. Fault-Block Oil & Gas Field,2013,20(5):623-626.

[17] 程倩,李江龙,刘中春,等.缝洞型油藏分类开发[J].特种油气藏,2012,19(5):93-96.

Cheng Qian,Li Jianglong,Liu Zhongchun,et al.Separate Deve-lopment of Fracture and Karst Cave Reservoirs[J].Special Oil & Gas Reservoirs,2012,19(5):93-96.

[18] 郑小敏,孙雷,侯亚平,等.缝洞型碳酸盐岩油藏水驱油物理模型对比实验研究[J].重庆科技学院学报:自然科学版,2009,11(5):20-22,82.

Zheng Xiaomin,Sun Lei,Hou Yaping,et al.Contrast research on water/oil displacing physical models of fracture-vuggy carbonate reservoir[J].Journal of Chongqing University of Science and Technology:Natural Science Edition,2009,11(5):20-22,82.

[19] 李江龙,陈志海,高树生.缝洞型碳酸盐岩油藏水驱油微观实验模拟研究:以塔河油田为例[J].石油实验地质,2009,31(6):637-642.

Li Jianglong,Chen Zhihai,Gao Shusheng.Microcosmic experiment modeling on water-driven-oil mechanism in fractured-vuggy re-servoirs[J].Petroleum Geology & Experiment,2009,31(6):637-642.

[20] 郑小敏,孙雷,王雷,等.缝洞型碳酸盐岩油藏水驱油机理物理模拟研究[J].西南石油大学学报:自然科学版,2010,32(2):89-92.

Zheng Xiaomin,Sun Lei,Wang Lei,et al.Physical simulation of water displacing oil mechanism for vuggy fractured carbonate rock reservoir[J].Journal of Southwest Petroleum University:Science& Technology Edition,2010,32(2):89-92.

[21] 李鹴,李允.缝洞型碳酸盐岩孤立溶洞注水替油实验研究[J].西南石油大学学报:自然科学版,2010,32(1):117-120.

Li Shuang,Li Yun.An experimental research on water injection to replace the oil in isolated caves in fracture-cavity carbonate rock oilfield[J].Journal of Southwest Petroleum University:Science & Technology Edition,2010,32(1):117-120.

[22] 李隆新,吴锋,张烈辉,等.缝洞型底水油藏开发动态数值模拟方法研究[J].特种油气藏,2013,20(3):104-107. Li Longxin,Wu Feng,Zhang Liehui,et al.Numerical simulation research on development performance of fractured-vuggy reservoirs with bottom water[J].Special Oil & Gas Reservoirs,2012,20(3):104-107.

[23] 陈莹莹,孙雷,田同辉,等.裂缝性碳酸盐岩油藏可视化模型水驱油实验[J].断块油气田,2012,19(1):92-94.

Chen Yingying,Sun Lei,Tian Tonghui,et al.Experiment on water-oil displacing for visible model of fractured carbonate reservoir[J].Fault-Block Oil and Gas Field,2012,19(1):92-94.

[24] 马旭杰,刘培亮,何长江.塔河油田缝洞型油藏注水开发模式[J].新疆石油地质,2011,32(1):63-65.

Ma Xujie,Liu Peiliang,He Changjiang.Waterflooding pattern for fractured-vuggy reservoir in Tahe Oilfield,Tarim Basin[J].Xinjiang Petroleum Geology,2011,32(1):63-65.

[25] 彭彩珍,孟立新,郭平,等.三维物理模型驱油实验模拟装置研制与应用[J].石油实验地质,2013,35(5):570-573.

Peng Caizhen,Meng Lixin,Guo Ping,et al.Development and application of modeling device for oil/water displacement by 3d physical model[J].Petroleum Geology & Experiment,2013,35(5):570-573.

[26] 西南石油大学.缝洞型碳酸盐凝析气藏注水替气实验测试方法:中国,CN102518414A[P].2012-06-27.

Southwest Petroleum University.An experimental test method on displacing gas by water injection for fractured-cavity carbonate gas-condensate reservoirs:China,CN102518414A[P].2012-06-27.

(编辑 黄 娟)

Physical simulation of exploiting fractured-vuggy carbonate gas condensate reservoirs by water injection

Peng Song, Guo Ping

(State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China)

Due to the development of fissures and cavities with different sizes and shapes, fractured-vuggy carbonate gas condensate reservoirs are distinct from the general sand gas condensate reservoirs, hence are characterized by strong heterogeneity and complicated flow regularity. To these reservoirs, it is a question of concern that which developing strategy is benefit to maximize the recoveries of oil and gas. As a mature technology, water injection possesses advantages such as lower cost, better gas-water mobility ratio, and higher sweep efficiency. Taking well TZ86 as a target, we accomplished a physical simulation research under initial reservoir conditions (140.6 ℃,58 MPa) by using an artificial fractured-vuggy full-diameter core which was made from an outcrop of carbonate rock. The experimental results show that the effectiveness of exploiting fractured-vuggy carbonate gas condensate reservoirs by water injection is significant. The factors such as the connectivity pattern between fissure and cavern, the pressure maintenance level of water injection, and cavern whether or not filling have effects on the recovery of condensate oil.

fractured-vuggy carbonate rock; gas condensate reservoir; high content of condensate oil; water injection; high temperature and high pressure; full-diameter core; physical simulation

1001-6112(2014)05-0645-05

10.11781/sysydz201405645

2013-05-07;

2014-07-20。

彭松(1986—),男,博士生,从事油气藏工程研究。E-mail: winter_melon@126.com。

郭平(1965—),男,教授,从事油气藏工程、油气相态、气田开发研究。E-mail: guopingswpi@vip.sina.com。

高校博士点基金“高温高压多组分凝析气非平衡相态理论模型研究”(20115121110002)资助。

TE372

A

猜你喜欢
凝析气缝洞凝析油
碳酸盐岩缝洞储集体分尺度量化表征
气田采出水中凝析油回收节能降耗对策及效果评价
渤海湾盆地渤中凹陷探明全球最大的变质岩凝析气田
某油田凝析油回收系统优化改进与效果分析
中国石化胜利油田海上油田首次开采出透明凝析油
哈拉哈塘奥陶系缝洞型成岩圈闭及其成因
凝析油处理系统能量利用方案优化研究
缝洞型介质结构对非混相气驱油采收率的影响
产水凝析气井积液诊断研究
盆5低压凝析气藏复产技术难点及对策