Z型铁氧体Sr­3(CuZn)xCo2(1−x)Fe24O41的微波吸收性能

2015-10-13 19:22周克省程静邓联文黄生祥周丽芳唐璐杨力妮
关键词:铁氧体介电常数电阻率

周克省,程静,邓联文,黄生祥,周丽芳,唐璐,杨力妮



Z型铁氧体Sr­3(CuZn)Co2(1−x)Fe24O41的微波吸收性能

周克省,程静,邓联文,黄生祥,周丽芳,唐璐,杨力妮

(中南大学物理与电子学院,湖南长沙,410083)

采用柠檬酸溶胶−凝胶法制备铜锌掺杂Z型锶钴铁氧体Sr3(CuZn)Co2(1−)Fe24O41(=0.1, 0.2, 0.3, 0.4, 0.5)样品。采用X线衍射(XRD)和扫描电镜(SEM)对样品的晶体结构、表面形貌进行表征。分别用圆柱体法和PPMS-9T型物性测量系统测量样品的室温电阻率和磁滞回线。用微波矢量网络分析仪测试该样品在2~18 GHz微波频率范围的复介电常数、复磁导率,并根据测量数据计算电磁损耗角正切和微波反射率,探讨该材料的微波吸收性能与电磁损耗机理。研究结果表明:所制备的样品呈六角片状形貌,晶体结构为Z型,呈软磁特性,其电阻率在半导体的电阻率范围内;当=0.3、厚度为2.5 mm时,样品在频率为11.4 GHz时的最大吸收峰为29 dB,10 dB带宽对应频率为7.7 GHz,是一种宽带微波吸收材料;样品的微波吸收来自磁损耗和介电损耗,但以磁损耗为主。

溶胶−凝胶法;Z型铁氧体;吸波材料;电磁损耗

铁氧体是一类已获得广泛应用的传统吸波材料,但进一步提高铁氧体的吸波性能及综合性能是研究热点。铁氧体包括尖晶石型、磁铅石型和石榴石型铁氧体,作为吸波材料一般以尖晶石和磁铅石型居多,而六角磁铅型铁氧体在吸收强度和频带宽度上更具优势[1]。六角铁氧体具有平面各向异性和较高的磁晶各向异性场,适应于GHz高频范围的电磁波吸收[2−4],其六角片状形貌更有利于微波吸收[5−7]。六角铁氧体晶型包括M,Y,W,X,Z及U型,其中对M型及W型六角铁氧体的微波吸收特性的研究较多。采用特殊电子结构的稀土及过渡金属掺杂是提高六角钡铁氧体微波吸收性能的重要途径。近年来,Z型铁氧体的微波电磁特性已引起人们广泛关注。Rashad等[8−11]发现用稀土离子对钡位取代得到Ba3−MCo2Fe24O41(M为La,Ce,Nd等),可使Z型钡钴铁氧体磁导率实部减小、虚部增大且晶粒尺寸、饱和磁化强度、磁晶各向异性常数、矫顽力发生变化,电磁特性得到明显改善。用过渡元素对钴位(或铁位)取代得到的Ba3ZnCo2−xFe24O41和Ba3Co2Fe24−xTiO41等Z型钡钴铁氧体也有类似结果[12−15]。人们对Z型钡铁氧体微波吸收特性的研究较多,而对锶铁氧体掺杂体系的研究较少。Cu2+取代Co2−可降低Z型钡钴铁氧体烧结温度,Zn2+取代Co2+可提高Z型钡钴铁氧体的饱和磁化强度[15],且Sr铁氧体比Ba铁氧体的成相温度略低。Z型铁氧体晶体结构较复杂,采用溶胶−凝胶法较固相反应法更易于掺杂和形成晶型。本文作者采用溶胶−凝胶法制备Sr3(CuZn)Co2(1−)Fe24O41,测试样品的磁性及电阻率,研究样品在2~18 GHz频率范围内的微波电磁特性及响应机制。

1 实验

1.1 样品制备

采用溶胶−凝胶工艺,根据Sr3(CuZn)Co2(1−)- Fe24O41(=0.1, 0.2, 0.3, 0.4, 0.5)的化学计量比称取原料硝酸锶(Sr(NO3)2)、硝酸钴(Co(NO3)3∙6H2O)、硝酸铁(Fe(NO3)3∙9H2O)、硝酸锌(Zn(NO3)3∙6H2O)以及硝酸铜(Cu(NO3)3∙6H2O)溶解于蒸馏水中,用磁力搅拌器搅拌至形成均匀透明褐色溶液,加入柠檬酸溶液(按金属离子与柠檬酸的摩尔比为1:1.5),然后将适量氨水滴入溶液中使其pH至6~7之间。将上述溶液置于80 ℃水浴环境下搅拌至形成褐色黏稠体,在干燥箱中(100 ℃)干燥后得到干凝胶。将干凝胶置于箱式电阻炉中,先在450 ℃进行预烧后粗研磨,再于1 250 ℃煅烧5 h,自然冷却,得到黑褐色的Sr3(CuZn)Co2(1−)Fe24O41材料样品。

1.2 测试方法

用荷兰帕纳科公司出厂的X’pert型X线衍射仪(Cu靶,工作电压为40 kV,电流为40 mA)分析样品的物相结构。用QUANTA 200型扫描电镜观察样品的微观表面形貌。分别用圆柱体法和PPMS−9T型物性测量系统测量样品在室温(25 ℃)时的电阻率和磁性能。

以石蜡为黏合剂,将Sr3(CuZn)Co2(1−)Fe24O41粉体与石蜡按质量比为4:1均匀混合加热,压制成外径为7.0 mm、内径为3.0 mm、厚度约为3.5 mm的圆环形样品。用AV3629型微波网络矢量分析仪测定样品在2~18 GHz频率范围内的复磁导率及复介电常数,所得数据的频率间隔为0.08 GHz。利用公式[16]

计算样品的微波反射率。式中:0为自由空间阻抗;in为电磁波垂直入射时样品的等效输入阻抗;m为样品厚度;­r和r分别为复介电常数和复磁导率。代入测量数据,可得不同厚度样品的微波反射率()与频率()的关系(−曲线)。

2 结果及讨论

2.1 样品的晶体结构、微观形貌及静态电磁性能

2.1.1 XRD分析

图1所示为于1 250 ℃煅烧5 h形成的Sr3(CuZn)- Co2(1−)Fe24O41的XRD图谱。从图1可见:衍射峰与Co2Z型铁氧体标准X线衍射卡特征衍射峰相吻合,说明所制备的样品为Z型六角晶体结构的铁氧体相;当在0.1~0.5范围时,晶体结构没有发生明显变化,过渡元素铜锌完全掺入于Z型铁氧体中。

图1 Sr3(CuZn)xCo2(1−x)Fe24O41的X线衍射图谱(于1 250 ℃煅烧5 h)

2.1.2 SEM分析

图2所示为于1 250 ℃煅烧5 h形成的Sr3(CuZn)- Co2(1−)Fe24O41(=0, 0.2, 0.3, 0.4)晶粉的SEM图像。从图2可见:不同铜锌掺杂量样品均呈片状形貌,六角解理面明显,晶粒粒度为微米级。

x: (a) 0; (b) 0.2; (c) 0.3; (d) 0.4

2.1.3室温磁滞回线

图3所示为不同铜锌掺杂量样品于室温(25 ℃)的磁滞回线,表1所示为磁性参数(矫顽力c、饱和磁化强度s和剩余磁化强度r。从图3和表1可见:各成分样品均呈软铁磁特性,但磁性参数有所变化;随着掺杂量增加,矫顽力和剩余磁化强度减小,饱和磁化强度增加;当=0.3时,饱和磁化强度最大,矫顽力和剩余磁化强度最小;当=0.4时,矫顽力和剩余磁化强度又增大,饱和磁化强度减小。其原因是大量Zn2+占据八面体空隙,产生晶格缺陷而形成内应力,使超交换作用减弱,使饱和磁化强度下降[15]。

表1 不同铜锌掺杂量样品室温下的磁性参数

x: (a) 0; (b) 0.2; (c) 0.3; (d) 0.4

2.1.4 室温电阻率

图4所示为Sr3(CuZn)Co2(1−x)Fe24O41样品的室温电阻率与掺杂量的关系。从图4可见:电阻率均在半导体范围内(10−3~109Ω·cm)但偏向绝缘体的电阻率范围;随着CuZn掺杂量的增加,电阻率先减小后增大,=0.3时样品的电阻率最低。其原因是2价Cu和Zn取代Co引起部分Fe价态变化(Fe3+变为Fe2+),Cu的导电性强且价态也可变,引起载流子浓度增加,从而电阻率减少;然而,当掺杂过量(>0.3)时,晶格畸变加剧导致电子散射增加,电阻率又增大。介质的微波吸收性能与阻抗匹配和电磁衰减这2个因素有关。材料导电率越高,越有利于衰减损耗,但阻抗匹配会下降,一般要求吸波介质的电阻率在半导体的电阻率范围之内。上述材料的电阻率在半导体电阻率范围内,有利于微波吸收。

图4 不同铜锌掺杂量样品的电阻率r

2.2 样品的微波电磁参数

图5~7所示分别为Sr3(CuZn)Co2(1−)Fe24O41样品的介电常数、磁导率、损耗角正切与频率(2.0~18.0 GHz)的关系曲线。

1—介电常数实部ε′; 2—介电常数虚部ε″

1—复磁导率实部μ′; 2—复磁导率虚部μ″

1—介电损耗角正切tan δe; 2—磁损耗角正切tan δm

2.3 样品的微波吸收性能

2.3.1 铜锌掺杂量对Sr3(CuZn)Co2(1−x)Fe24O41微波吸收性能的影响

图8所示为涂层厚度为2.5 mm、不同铜锌掺杂量(=0, 0.1, 0.2, 0.3, 0.4, 0.5)的样品微波反射率与微波频率(2~18 GHz)的关系曲线。从图8可见:随着掺杂量增加,10 dB吸收频带变宽,吸收峰值增强;当=0.3时,有效吸收频率范围最宽,达到7.7 GHz,吸收峰值达29 dB;但当为0.4和0.5时,吸收频带又变窄,吸收峰值又下降。可见:适量的铜锌掺杂可以有效地改善样品的微波吸收性能。

x:1—0; 2—0.1; 3—0.2; 4—0.3; 5—0.4

2.3.2 厚度对Sr3(CuZn)0.3Co1.4Fe24O41微波吸收性能的影响

图9所示为样品Sr3(CuZn)0.3Co1.4Fe24O41在不同厚度下的的微波反射率与频率(2~18 GHz)的关系曲线。从图9可见:随着样品厚度增加,吸收峰值发生红移且逐渐升高,吸收频带加宽;当厚度为2.5 mm时,吸收峰峰值最大,吸收频带最宽;但当厚度增加到2.7 mm和2.9 mm时,吸收峰值明显降低。根据吸收峰值和带宽数据,Sr3(CuZn)0.3Co1.4Fe24O41样品的匹配厚度为2.5 mm。

厚度/mm: 1—2.3;2—2.5;3—2.7;4—2.9

2.3.3 微波吸收机理分析

适量的CuZn取代钴能明显地改善Z型Sr3(CuZn)Co2(1−)Fe24O41铁氧体的微波吸波性能,但当掺杂量>0.3时,微波吸收性能下降(见图8)。这是因为掺杂过量可能会加剧晶格畸变,一方面减弱了超交换作用,饱和磁化强度减弱[15];另一方面,电子散射加剧,电阻率增大,饱和磁化强度减弱,导致磁损耗降低,电阻率增加将减少与导电性有关的漏电损耗和涡流损耗即电阻型损耗;当=0.3时,电阻率最低,饱和磁化强度最大,矫顽力最小,相对而言,其微波吸收性能最佳。由图5~7可知:Sr3(CuZn)- Co2(1−)Fe24O41既存在介电损耗,又存在磁损耗,但以磁损耗为主,因为介电损耗因子远小于磁损耗因子,介电常数虚部数值小。电阻型损耗中的漏电损耗和涡流损耗在本质上分别属于介电损耗和磁损耗,因为材料介电常数虚部和磁导率虚部与电阻率有关。中偏高频段的介电损耗角正切和磁损耗角正切大(见图7),所以,反射率曲线的吸收峰出现在中偏高频段(见图8)。铁氧体是强磁性材料,也是一种电介质。六角铁氧体中的Fe位被部分取代后存在晶格畸变,将引起电子云畸变而形成固有电矩,同时还存在界面极化。在微波电磁场作用下,固有电矩极化和界面极化驰豫将引起一定介电损耗,介电常数虚部峰(图5)由弱的偶极共振引起。根据磁学理论[17−18],磁损耗来源于磁后效和畴壁位移等磁化驰豫以及畴壁共振、自然共振。图6中磁谱中有2个共振峰,与图7中2个损耗峰有对应关系,低频位置的共振峰和高频位置的共振峰分别由畴壁共振和自然共振引起。在铁氧体中掺杂离子,能引起磁晶各向异性变化,进而导致共振频率变化。另外,掺杂造成晶格缺陷将产生局部应力和散磁能,从而引起畴壁钉扎效应[18],磁损耗增强。所以,一定成分和一定量的掺杂能调节铁氧体电磁参数,有利于改善铁氧体的微波吸收性能和改变吸收峰频率位置。六角片状所产生的形状各向异性可增强体系的微波吸收[19]。

3 结论

1) 采用溶胶−凝胶法制备、于1 250 ℃煅烧5 h后形成的Sr3(CuZn)Co2(1−)Fe24O41-Z型铁氧体呈六角片状形貌,粒子粒度为微米级,具有良好的软磁特性,电阻率处于半导体电阻率范围之内,CuZn能完全掺入其结构中;当=0.3时,样品电阻率最低,饱和磁化强度最大。

2) CuZn掺杂量对Sr3(CuZn)Co2(1−)Fe24O41微波吸收性能有显著影响。当=0.3时,样品的微波吸收性能最佳,在11.4 GHz频率位置的吸收峰值为29 dB,10 dB的有效吸收频宽为7.7 GHz,是一种宽带强吸收微波吸收材料。

3) 样品的微波吸收来自于强的磁损耗和弱的介电损耗。介电损耗主要由偶极极化和界面极化弛豫引起。磁损耗主要来源于磁化弛豫、畴壁共振和自然共振。六角片状形貌有利于微波吸收。

[1] 康青. 新型微波吸收材料[M]. 北京: 科学出版社, 2006: 34−66, 303−304. KANG Qing. New type of microwave absorbing materials[M]. Beijing: Science Press, 2006: 34−66, 303−304.

[2] Sugimoto S, Haga K, Kagotani T, et al. Microwave absorption properties of Ba M-type ferrite prepared by a modified coprecipitation method[J]. Journal of Magnetism and Magnetic Materials, 2005, 290/291(2): 1188−1191.

[3] Choopani S, Keyhan N, Ghasemi A, et al. Structural, magnetic and microwave absorption characteristics of BaCoMnTi2x- Fe12−4xO19[J]. Mater Chem Phys, 2009, 113(1/2): 717−720.

[4] Kim Y J, Kim S S. Magnetic and microwave absorbing properties of Ti and Co substituted M-hexaferrites in Ka-band frequencies (26.5−40.0 GHz)[J]. Journal of Electroceramics, 2010, 24(4): 314−318.

[5] Sharma R, Agarwala R C, Agarwala V. Development of radar absorbing nano crystals by microwave irradiation[J]. Materials Letters, 2008, 62(15): 2233−2236.

[6] MU Guohong, CHEN Na, PAN Xifeng, et al. Preparation and microwave absorption properties of barium ferrite nanorods[J]. Materials Letters, 2008, 62(6/7): 840−842.

[7] WANG Xian, GONG Rongzhou, LI Peigang, et al. Effects of aspect ratio and particle size on the microwave properties of Fe-Cr-Si-Al alloy flakes[J]. Materials Science and Engineering, 2007, 466(1/2): 178.

[8] Rashad M M, El-Sayed H M, Rasly M, et al. Magnetic and dielectric properties of polycrystalline La doped barium Z-type hexaferrite for hyper-frequency applications[J]. Journal of Materials Science, 2013, 24(1): 282−289.

[9] MU Chunhong, LIU Yingli, SONG Yuanqiang, et al. Improvement of high-frequency characteristics of Z-type hexaferrite by dysprosium doping[J]. Journal of Applied Physics, 2011, 109(12): 123925.

[10] XU Jijing, JI Guijuan, ZOU Haifeng, et al. Structural, dielectric and magnetic properties of Nd-doped Co2Z-type hexaferrites[J]. Journal of Alloys and Compounds, 2011, 509(11): 4290−4294.

[11] 孙银凤, 李国栋, 张常在, 等. 稀土Z型铁氧体Ba3−xCeCo2Fe24O41的制备及其微波吸收性能[J]. 中国稀土学报, 2006, 24(Z1): 152−155.SUN Yinfeng, LI Guodong, ZHANG Changzai, et al. Synthesis and microwave absorbing properties of Z type hexaferrite Ce-doped Ba3−xCeCo2Fe24O41[J]. Journal of the Chinese Rare Earth Society, 2006, 24(Z1): 152−155.

[12] Li Z W, Wu Y P. Static and dynamic magnetic properties of CoZn substituted Z-type barium ferrite Ba3CoZn2−xFe24O41composites[J]. Journal of Magnetism and Magnetic Materials, 2007, 310(1): 145−151.

[13] Li Z W, Yang Z H. Effect of Ti substitution on dynamic and static magnetic properties for Ba3Co2Fe24−xTixO41hexaferrites[J]. Journal of Magnetism and Magnetic Materials, 2013, 334(1): 5−10.

[14] Tachibana T, Nakagawa T, Takada Y. Influence of ion substitution on the magnetic structure and permeability of Z-type hexagonal Ba-ferrites: Ba3Co2−Fe24+x−CrO41[J]. Journal of Magnetism and Magnetic Materials, 2004, 284(12): 369−375.

[15] ZHANG Hongguo, ZHOU Ji, WANG Yongli. Investigation on physical characteristics of novel Z-type Ba3Co2(0.8−)Cu0.40- Zn2xFe24O41[J]. Mater Lett, 2002, 56(4): 397−403.

[16] Singh P, Babbar V K, Razdan A, et al. Complex permittivity, permeability, and x-band microwave absorption of CaCo-Ti ferrite composites[J]. Journal of Applied Physics, 2000, 87(9): 4362.

[17] 廖绍彬. 铁磁学[M]. 北京: 科学出版社, 1988: 22−48.LIAO Shaobin. Ferromagnetics[M]. Beijing: Science Press, 1988: 22−48.

[18] 姜寿亭, 李卫. 凝聚态磁性物理[M]. 北京: 科学出版社, 2003: 353. JIANG Shouting, LI Wei. Condensed matter magnetic physics[M]. Beijing: Science Press, 2003: 353.

[19] 周克省, 陈颖, 秦宪明, 等. Z型铁氧体Ba3(MnZn)- Co2(1−)Fe24O41的微波吸收性能[J]. 功能材料, 2011, 42(10): 1810−1813.ZHOU Kesheng, CHEN Ying, QIN Xianming, et al. Microwave absorbing properties of Z-type hexaferrite Ba3(MnZn)- Co2(1−)Fe24O41[J]. Journal of Functional Materials, 2011, 42(10): 1810−1813.

Microwave absorbing properties of Z-type hexaferrite Sr3(CuZn)Co2(1−)Fe24O41

ZHOU Kesheng, CHENG Jing, DENG Lianwen, HUANG Shengxiang, ZHOU Lifang, TANG Lu, YANG Lini

(School of Physics and Electronics, Central South University, Changsha 410083, China)

The samples of CuZn-doped Z-type strontium ferrite Sr3(CuZn)Co2(1−)Fe24O41(=0.1, 0.2, 0.3, 0.4, 0.5) were prepared by citric acid sol-gel process. The crystal structure and surface morphology of the particles were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The electric resistivity and the hysteresis loop of samples at room temperature were determined by cylinder method and PPMS-9T type physical property measurement system(PPMS), respectively. Their complex dielectric constant and complex permeability were measured by microwave vector network analyzer in the frequency range from 2 to 18 GHz, the reflection coefficient and loss tangent were calculated according to measurements, the microwave absorbing properties and the electromagletic loss mechanism of samples were studied. The results show that there samples have a Z-type hexaferrite crystal structure, a micro-hexagonal flaky powder morphology, a soft magnetic propertie and a resistivity in the semiconductor range. Sr3(CuZn)Co2(1−)Fe24O41is a kind of microwave absorption material with wide band, an absorption peak is 29 dB at 11.4 GHz and a bandwidth above 10 dB is 7.7 GHz when its thickness is 2.5 mm and=0.3. The microwave absorption of the samples results from both dielectric loss and magnetic loss but the latter is more remarkable.

sol−gel method; Z-type ferrite; microwave absorbing materials; electromagnetic loss

10.11817/j.issn.1672-7207.2015.05.007

TB34

A

1672−7207(2015)05−1615−07

2014−06−12;

2014−08−22

湖南省科技计划项目(2011SK3258);粉末冶金国家重点实验室开放基金资助项目(2011) (Project(2011SK3258) supported by Science and Technology Project of Hunan Province; Project(2011) supported by the Open Fund of State Key Laboratory of Powder Metallurgy)

周克省,博士,教授,从事功能材料研究;E-mail: 5430@csu.edu.cn

(编辑 陈灿华)

猜你喜欢
铁氧体介电常数电阻率
低损耗微波YIG铁氧体化学合成工艺及性能研究
基于反函数原理的可控源大地电磁法全场域视电阻率定义
阻尼条电阻率对同步电动机稳定性的影响
基于防腐层电阻率的埋地管道防腐层退化规律
介电常数对比度对光子晶体平带的影响
示踪剂种类及掺量对水泥土混合浆液的电学行为影响研究
单个铁氧体磨粒尺寸检测电磁仿真
Sm-Cu离子取代锶铁氧体制备与磁性能研究
太赫兹波段碲化镉介电常数的理论与实验研究
无铅Y5U103高介电常数瓷料研究