胰岛素样生长因子系统与衰老的研究进展

2016-02-16 05:43付建芳任东妮杨宏伟涂艳阳第四军医大学西京医院内分泌科陕西西安700第四军医大学唐都医院实验外科陕西西安7008哈佛医学院布列根与妇女医院神经外科美国波士顿05暨南大学附属第一医院输血科广东广州5060
转化医学电子杂志 2016年12期
关键词:生长因子受体胰岛素

付建芳,任东妮,王 欣,杨宏伟,梁 雁,涂艳阳(第四军医大学西京医院内分泌科,陕西西安700,第四军医大学唐都医院实验外科,陕西西安7008,哈佛医学院布列根与妇女医院神经外科,美国波士顿05,暨南大学附属第一医院输血科,广东广州5060)

胰岛素样生长因子系统与衰老的研究进展

付建芳1,任东妮2,王 欣3,杨宏伟3,梁 雁4,涂艳阳2(1第四军医大学西京医院内分泌科,陕西西安710032,2第四军医大学唐都医院实验外科,陕西西安710038,3哈佛医学院布列根与妇女医院神经外科,美国波士顿02115,4暨南大学附属第一医院输血科,广东广州510630)

胰岛素样生长因子(IGF)系统是由3个配体(胰岛素、IGF-1、IGF-2),3个细胞表面结合受体(Ins R、IGF-1R、IGF-2R),以及胰岛素样生长因子结合蛋白(IGFBPs)和IGFBP蛋白酶组成.IGF系统中各因子通过与受体结合或激活细胞内多种信号级联反应,在细胞、组织和机体的各个生命进程发挥重要作用,例如衰老、延缓衰老.探究影响衰老的分子机制一直以来都是科学家研究的重要课题.研究发现IGF-1、IGF-1R、IGFBPs在多种细胞中调节衰老和衰老相关的信号通路,而且在机体衰老相关的疾病如心脑血管疾病、骨质疏松及椎骨老化等中发挥重要作用.

胰岛素样生长因子系统;衰老;信号转导

0 引言

衰老是机体各器官功能普遍的、逐渐降低的过程.在衰老的进程中许多生理因素发挥重要作用,其中的一个因素就是胰岛素样生长因子(Insulin-like growth factor,IGF)系统.研究发现局部抑制胰岛素样生长因子介导的信号转导会导致无脊椎动物和脊椎动物模式生物寿命的增加,既延缓衰老[1].通过靶向突变技术,在无脊椎动物的寿命决定基因方面的研究取得了显著进展,已经阐明抑制胰岛素/胰岛素样生长因子-1信号通路能够显著增加寿命[2].在Caenorhabditis elegans的研究中[3-5],首先发现抑制daf-2(编码insulin-like growth factor-1 receptor,IGF-1R)信号通路能够增加寿命.在果蝇、酵母和哺乳动物中[6-8],与daf-2信号通路类似的胰岛素样信号级联反应可以通过改变IGF-1信号来增加寿命.经过科学家长期探索,已有大量研究结果表明IGF系统在细胞、组织和机体的衰老进程中发挥重要作用.

1 胰岛素样生长因子系统及功能概述

胰岛素样生长因子是一类自然生长激素,在机体的生长和发育中发挥重要作用.IGF家族是由胰岛素(Insulin,Ins)和两个与胰岛素类似的因子IGF-1和IGF-2组成.这些因子通过与特定的细胞表面受体(Ins R、IGF-1R、IGF-2R)结合或激活多种细胞内信号级联反应来调节细胞功能.受6个可以和IGFs结合的可溶的IGF结合蛋白(Insulin-like growth factor binding proteins,IGFBPs)以及IGFBP相关蛋白(IGFBP related proteins,IGFBP-rPs)调节.这些IGFBP-rPs在结构上与IGFBPs相似,但是与IGFs结合力较低.目前很多研究将IGFBP-rPs归于IGFBPs,例如IGFBP-rP1又称IGFBP7[9-11].较早的研究认为IGF系统是由三个配体(Insulin、IGF-1、IGF-2)、三个受体(Ins R、IGF-1R、IGF-2R)、6个IGF结合蛋白(IGFBP1-6)组成.随着研究的深入,目前的研究认为IGF系统,除了上述的配体和受体,还包括IGFBPs(IGFBP1-6、IGFBP-rP1-10)和IGFBP蛋白酶[11].

1.1 IGF家族IGF家族第一个被发现的成员就是胰岛素,研究表明它在葡萄糖代谢中发挥重要作用,是糖尿病的主要病因.IGF-1和IGF-2之所以称为胰岛素样(“insulin-like”)生长因子是因为他们能够刺激细胞和肌肉吸收葡萄糖,而且与胰岛素同源性达到50%[12-13].

循环中的IGFs通过与高亲和力的IGFBPs形成复合物防止降解[14].在组织中,IGFBPs能够抑制IGFs与相应受体结合,因为IGFBPs与IGFs结合的亲和力高于受体与IGFs结合的亲和力.在某些情况下,IGFBPs作为一个储水库慢慢释放IGF配体从而加强IGF在产生部位的微环境中作用量.另外,一些IGFBPs可以不依赖IGFs作用于细胞.此处要强调一点,IGFBPs不与胰岛素结合,因此也不干扰胰岛素与胰岛素受体(Ins-Ins R)结合.

1.2 胰岛素受体及IGF受体 IGF-1R和IGF-2R是组成IGF系统的主要受体,是两个在结构和功能上完全不同的跨膜糖蛋白[15-19].IGF-1R是由两个相同的ɑ-亚基和两个相同的β-亚基组成的四聚体[17-18,20],在结构上与胰岛素受体(Insulin receptor,IR)相似.IGFs和Ins可以交叉结合其他因子的受体,虽然亲和能力弱于优先结合的配体[21-22](图1).这些受体在功能上认为与IGF-1R相同,但是其生物意义仍然不清楚.IGF-2R是单体[18,23-25],与IGF-1R和IR在功能上无相关性,受体细胞外区域有三个配体结合区域,一个结合IGF-2,一个结合甘露糖-6-磷酸(mannose-6-phosphate,M6P),另一个结合未激活形式的转化生长因子(transforming growth factor-,TGF-)[26].结合IGF-2后的复合物结合TGF-β,可以激活TGF-β[27].IGF-2R在IGF系统中唯一的作用是捕获循环的IGF-2,使IGF-2被水解为可溶的片段,促进其降解[28-33].

受体后信号转导包括胰岛素受体底物(insulin receptor substrate,IRS)家族蛋白磷酸化以及磷脂酰肌醇-3(phosphatidylinositol-3,PI-3)和丝裂原激活蛋白激酶类的激活[34-35].激活的IRSs引起细胞内Ras/Raf/Mek/Erk和PI3K信号通路激活,前者主要介导有丝分裂,而PI3K通路通过Akt介导新陈代谢和细胞生长效应(图1).

图1 胰岛素与相应胰岛素受体结合并激活下游信号通路示意图

1.3 IGFBPs家族IGFBPs和IGFBP蛋白酶是IGF系统的重要组成部分[11].根据与IGFs的亲和力,IGFBPs分为两组:IGF高亲和力结合蛋白(IGFBP1-6);IGF低亲和力的IGFBP相关蛋白IGFBP-rP1-10.IGFBPs通过与IGFs以及相应受体结合,调节其生物活性,在多种新陈代谢和生长增殖进程中发挥重要作用.IGFBPs分别在多种细胞的生长、分裂、分化、凋亡、衰老等过程中发挥重要作用,有些依赖IGF信号,有些则不依赖.IGFBP蛋白酶属于蛋白酶家族,对IGFBPs具有特异性,受IGFBPs的调控,最终调节IGFs的生物活性和下游的信号转导[14,36].

2 IGF系统及信号转导与细胞衰老

细胞衰老是指细胞随时间增长或外界环境压力下停止增长,是不可逆的细胞周期停滞,与机体的衰老密切相关.大量研究表明增加的IGF信号促进细胞分裂、生存和癌细胞发育,抑制IGF信号被认为能够增长寿命,延缓衰老.IGF信号调节衰老的分子机制,以及是否IGF调节细胞衰老的研究目前还知之甚少.

2.1 IGF-1与衰老分子机制Tran等[37]研究发现持续IGF-1处理能够抑制SIRT1脱乙酰酶的生物活性,使得p53乙酰化以及p53稳定性和生物活性增加,进一步导致不成熟细胞衰老.另外,SIRT1的表达或p53的抑制抑制了IGF-1诱导的不成熟细胞的衰老.结果表明p53作为一个链接分子介导IGF-1诱导的细胞增殖和不成熟细胞衰老,提示在细胞衰老和成熟中IGF-1-SIRT1-p53是一个可能的分子链接信号.

Selman等[38]监测了IRS1或IRS2(是胰岛素和IGF-1信号受体的细胞内效应物)缺失的小鼠的寿命,发现雌性Irs1-/-小鼠寿命较长.此外,Irs1-/-小鼠对于一系列年龄敏感性衰老指标包括皮肤、骨骼、免疫和运动功能障碍表现出抵抗效应.

2.2 IGFBPs与衰老最近的研究发现了一个由衰老细胞分泌的分子群,被提议称为“衰老相关分泌表型”(senescence-associated secretory phenotype,SASP).这些分泌因子可以调节衰老反应,代表正常的邻近细胞走向衰老的一种危险信号,能够增强损伤细胞走向衰老.研究发现IGFBPs家族与SASP密切相关.

2.2.1 IGFBP2 在外周循环中,IGFBP2含量仅次于IGFBP3的结合蛋白[14].IGF-1是IGFBP2合成的刺激物,而生长激素(growth hormone,GH)则是一个抑制物[39].IGFBP2对于健康的影响的研究有些争议.一方面研究认为低浓度血清IGFBP2与高程度的肥胖和胰岛素抵抗密切相关[40].另一方面,在老年人中,低浓度血清IGFBP2提示好的身体机能,高IGFBP2浓度则提示大的伤残、较差的身体机能、较弱的肌肉强度和较低的骨密度,以及较小的瘦肉和脂肪量[41].α-2-巨球蛋白(Alpha-2-macroglobulin,α2M)是唯一一个在循环中与IGFBP2结合的蛋白.最近的的研究发现α2M和IGFBP2可以形成复合物,但这种现象的生理功能还不清楚[42].

2.2.2 IBFBP3 Kim等[43]采用cDNA微阵列技术发现在衰老的人真皮成纤维细胞IGFBP3含量增加.在衰老的人脐静脉内皮细胞(human umbilical vein endothelial cells,HUVECs)中,IGFBP3在mRNA和蛋白水平均增高.在年轻的HUVECs中,下调IGFBP3的表达则能够补救P53过表达诱导的生长停滞.在年轻细胞中,上调IGFBP3或持续采用IGFBP3则能够加速细胞衰老.另外,IGFBP3在大鼠的肝脏和血清中是随年龄增长而增加的,能量限制能够降低IGFBP3的蛋白水平.表明IGFBP3在HUVECs细胞的衰老和体内的衰老中具有重要作用.Elzi等[44]在人乳腺癌细胞中发现IGFBP3的衰老诱导活性受组织型纤溶酶原激活物介导的蛋白水解作用抑制,而这一作用能够被另一个衰老的分泌中介血纤维蛋白溶酶原激活物抑制因子(plasminogen activator inhibitor 1,PAI-1)抵消.表明IGFBP3是PAI-1诱导的衰老的重要的下游靶点.

2.2.3 IGFBP5 Kim等[45]的另外一个研究发现敲低IGFBP5能够引起一系列衰老相关的表型,如细胞形态、细胞增生、衰老相关的β-半乳糖苷酶(senescence-associated β-galactosidase,SA-β-gal))染色.敲低P53能够改善在年轻细胞中上调IGFBP5诱导的的细胞早衰.另外,动脉粥样硬化的动脉内膜斑块在具有较强的P53阳性染色.表明通过P53依赖的通路IGFBP5在调节细胞衰老和衰老相关的血管疾病中具有重要作用.Kojima等[46]研究认为STAT3-IGFBP5轴是IL-6/gp130诱导的人纤维母细胞早衰的机制中重要部分.

2.2.4 IGFBP4和IGFBP7 Severino等[47]研究认为IGFBP4和IGFBP7在年轻的间充质干细胞(mesenchymal stem cells,MSCs)中引发衰老的重要组成部分.在年轻的MSC中同时添加rIGFBP4/7能加快细胞衰老并诱发凋亡.

Wajapeyee等[48]应用全基因组RNA干扰筛选并鉴定了17个基因,这些基因是活化的BRAF原癌基因(BRAFV600E)抑制原发性黑色素细胞和黑色素瘤细胞的增殖所必须的,其中一个基因编码一种分泌蛋白就是IFGBP7.IGFBP7在BRAFV600E介导的细胞衰老和凋亡中发挥重要作用.BRAFV600E在原代细胞的表达引起IGFBP7的合成和分泌,通过自分泌或旁分泌通路抑制然BRAF-MEK-ERK信号并诱导细胞衰老和凋亡.而Scurr等[49]的研究则认为在人生黑色素细胞和纤维母细胞中BRAF信号不能诱导IGFBP7的表达,也不能诱导IGFBP7的靶蛋白BNIP3L、SMARCB1和PEA15的表达,并且发现在22种黑色素瘤细胞系、90个黑素瘤和46个良性痣中,BRAF突变作用与IGFBP7蛋白的表达无关.此外,采用慢病毒沉默IGFBP7实验发现BRAF诱导的生黑色素细胞和纤维母细胞衰老不依赖IGFBP7.因此认为分泌蛋白IGFBP7在BRAFV600E诱导的生黑色素细胞衰老是非必要的.文章一经发表,Wajapeyee等[50]又进行了一些数据补充,并对Scurr等的研究进行反驳,认为在黑素瘤中BRAFV600E转录诱导IGFBP7的表达;BRAFV600E介导的衰老中IGFBP7是必须的;含有BRAFV600E的原代黑素瘤IGFBP7的常常缺失.综上所述,在黑素瘤中IGFBP7是一个肿瘤抑制蛋白.

3 IGF系统与组织、器官机体衰老

3.1 IGF1与心血管疾病及血管衰老心血管系统疾病包括:心脏衰竭、心肌梗赛、中风、血管性痴呆、高血压及其并发症、主动脉瘤、外周动脉疾病等,是引起老年人发病和死亡的重要因素.年龄相关的心脏和组织血液供应障碍是人类机体衰老重要原因[51].血管衰老是通过氧化、炎症、细胞衰老和表观遗传修饰,内皮细胞(endothelial cells,ECs)和血管平滑肌细胞功能发生改变,导致动脉粥样硬化等疾病概率增加的过程.年龄相关的IGF-1减少与心血管系统衰老的分子、细胞和功能方面的变化密切相关.

最近的一些研究发现循环中的IGF-1与心血管疾病呈负相关性[52-55].例如,Troncoso等[56]和Vasan等[57]研究发现老年人IGF-1水平低则会有较高的缺血性中风和充血性心力衰竭风险,而且急性心肌梗死恢复期预后较差[58].在大多观察性研究中,发现成人GH缺损,循环中IGF-1水平降低,增加了动脉粥样硬化等心脑血管疾病风险[59].Laughlin等[60]用将近10年时间对1185名患者进行监测,并推断循环的IGF-1水平能够预测缺血性心脏疾病.

GH/IGF-1 axis对心血管系统的影响被认为是衰老进程中微脉血管的保护和心脏保护的潜在机制.Granata等[61]的研究认为IGF-1通过具有抗炎和修复机制从而产生抗动脉粥样硬化效应.Higashi等[62]研究报道IGF-1通过下调谷胱甘肽过氧化物酶1的表达增强内皮细胞(endothelial cells,ECs)抗氧化活性和活性.

3.2 IGF-1缺陷与骨质疏松和椎骨老化 衰老常伴随着骨结构和功能的下降,显著增加了老年患者骨质疏松以及骨折的风险.衰老相关的骨健康方面的改变是骨形成到骨吸收的改变的结果[63].一些信号激素包括IGF-1、类固醇激素,对于骨健康和成骨细胞活性非常重要.在成骨细胞中敲除IGF-1R导致成年期骨体积和骨密度减少[64-65]类似的,特异性删除肝脏中IGF-1产物导致成年期股骨长度[66]和骨密度[67]降低.虽然这些研究清楚地强调了IGF-1对正常的骨发育的重要性,但是循环的IGF-1的减少效应对于年龄相关的椎骨结构和功能上的改变仍不清楚.

有趣地是,高的IGF水平不总意味着增加的骨健康.例如早期敲除循环中IGF-1的一个重要的稳定蛋白-酸不稳定性亚单位(acid-labile subunit,ALS),能够减少60%~75%的IGF-1水平,但是在老年雄鼠中则降低股骨皮质厚度[68],表明早期或长期IGF-1缺失促进长骨骼老化.与此相反,最近的一项研究发现在成年期循环的IGF-1减少导致在衰老进程中股骨皮质和松质骨厚度减小[69].因此,不同的结果表明IGF-1缺失的结果可能依赖于诱导缺失时生命的阶段.最新的一项研究发现,在雄鼠中循环的IGF-1降低在任何年龄阶段都不能减小椎骨骨质流失.有趣的是,在雌鼠中早期缺失IGF-1导致椎骨体积分数增加67%,而且增加相应的密度.表明IGF-1调节椎骨老化是通过一个性别特异性和时间依赖性的机制[70].另外,大量临床研究表明降低循环中IGF-1水平增加骨质疏松的风险[71-72].

4 展望

IGF系统中各成员如IGF-1,IGFBPs与衰老相关的分子、信号通路、疾病有着密切的联系.IGF-1和IGFBPs可以与衰老相关分子如p53、GH、PAI-1等作用共同介导细胞衰老.这些分子参与多种信号转导通路,如胰岛素/IGF-1信号、Ras/Raf/Mek/Erk和PI3K信号通路,mTOR信号通路等共同导致细胞或机体的衰老.目前这些研究在不同细胞、不同组织机体中还存在许多争议,而这些衰老相关分子和通路还不完整.因此IGF系统对于衰老的影响的分子机制还不完善,有待于进一步研究.另外,IGFBPs中IGFBP2、IGFBP3、IGFBP4、IGFBP5、IGFBP7等在多种细胞中被证实具有调节细胞衰老的作用,推测,IGFBPs可能作为衰老的生物指标.

[1]Berryman DE,Christiansen JS,Johannsson G,et al.Role of GH/IGF-1 axis in lifespan and healthspan:lessons from animal models[J].Growth Horm IGF Res,2008,18(6):455-471.

[2]Carter CS,Ramsey MM,Sonntag WE.A critical analysis of the role of growth hormone and IGF-1 in aging and lifespan[J].Trends Genet,2002,18(6):295-301.

[3]Paradis S,Ruvkun G.Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor[J].Genes Dev,1998,12(16):2488-2498.

[4]Kenyon C,Chang J,Gensch E,et al.A C.elegans mutant that lives twice as long as wild type[J].Nature,1993,366(6454):461-464.

[5]Johnson TE.Increased life-span of age-1 mutants in Caenorhabditis elegans and lower Gompertz rate of aging[J].Science,1990,249(4971):908-912.

[6]Kenyon C.A conserved regulatory system for aging[J].Cell,2001,105(2):165-168.

[7]Clancy DJ,Gems D,Harshman LG,et al.Extension of life-span by loss of CHICO,a Drosophila insulin receptor substrate protein[J].Science,2001,292(5514):104-106.

[8]Fabrizio P,Pozza F,Pletcher SD,et al.Regulation of longevity and stress resistance by Sch9 in yeast[J].Science,2001,292(5515):288-290.

[9]Minchenko DO,Kharkova AP,Tsymbal DO,et al.IRE1 inhibition affects the expression of insulin-like growth factor binding protein genes and modifies its sensitivity to glucose deprivation in U87 glioma cells[J].Endocr Regul,2015,49(4):185-197.

[10]Rupp C,Scherzer M,Rudisch A,et al.IGFBP7,a novel tumor stroma marker,with growth-promoting effects in colon cancer through a paracrine tumor-stroma interaction[J].Oncogene,2015,34(7):815-825.

[11]Zhu S,Xu F,Zhang J,et al.Insulin-like growth factor binding protein-related protein 1 and cancer[J].Clin Chim Acta,2014,431:23-32.

[12]Rinderknecht E,Humbel RE.The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin[J].J Biol Chem,1978,253(8):2769-2776.

[13]Blundell TL,Bedarkar S,Humbel RE.Tertiary structures,receptor binding,and antigenicity of insulinlike growth factors[J].Fed Proc,1983,42(9):2592-2597.

[14]Firth SM,Baxter RC.Cellular actions of the insulin-like growth factor binding proteins[J].Endocr Rev,2002,23(6):824-854.

[15]Han VK,Lund PK,Lee DC,et al.Expression of somatomedin/insulin-like growth factor messenger ribonucleic acids in the human fetus:identification,characterization,and tissue distribution[J].J Clin Endocrinol Metab,1988,66(2):422-429.

[16]Lowe WL Jr,Lasky SR,LeRoith D,et al.Distribution and regulation of rat insulin-like growth factor I messenger ribonucleic acids encoding alternative carboxyterminal E-peptides:evidence for differential processing and regulation in liver[J].Mol Endocrinol,1988,2(6):528-535.

[17]LeRoith D,Werner H,Beitner-Johnson D,et al.Molecular and cellular aspects of the insulin-like growth factor I receptor[J].Endocr Rev,1995,16(2):143-163.

[18]Stewart CE,Rotwein P.Growth,differentiation,and survival:multiple physiological functions for insulin-like growth factors[J].Physiol Rev,1996,76(4):1005-1026.

[19]Yu H,Rohan T.Role of the insulin-like growth factor family in cancer development and progression[J].J Natl Cancer Inst,2000,92(18):1472-1489.

[20]Sepp-Lorenzino L.Structure and function of the insulin-like growth factor I receptor[J].Breast Cancer Res Treat,1998,47(3):235-253.

[21]Steele-Perkins G,Turner J,Edman JC,et al.Expression and characterization of a functional human insulin-like growth factor I receptor[J].J Biol Chem,1988,263(23):11486-11492.

[22]Frattali AL,Pessin JE.Relationship between alpha subunit ligand occupancy and beta subunit autophosphorylation in insulin/insulin-like growth factor-1 hybrid receptors[J].J Biol Chem,1993,268(10):7393-7400.

[23]Oates AJ,Schumaker LM,Jenkins SB,et al.The mannose 6-phosphate/insulin-like growth factor 2 receptor(M6P/IGF2R),a putative breast tumor suppressor gene[J].Breast Cancer Res Treat,1998,47(3):269-281.

[24]Morgan DO,Edman JC,Standring DN,et al.Insulin-like growth factor II receptor as a multifunctional binding protein[J].Nature,1987,329(6137):301-307.

[25]Oshima A,Nolan CM,Kyle JW,et al.The human cation-independent mannose 6-phosphate receptor.Cloning and sequence of the fulllength cDNA and expression of functional receptor in COS cells[J].J Biol Chem,1988,263(5):2553-2562.

[26]Jones JI,Clemmons DR.Insulin-like growth factors and their binding proteins:biological actions[J].Endocr Rev,1995,16(1):3-34.

[27]Braulke T.Type-2 IGF receptor:a multi-ligand binding protein[J].Horm Metab Res,1999,31(2-3):242-246.

[28]Kiess W,Greenstein LA,White RM,et al.TypeⅡinsulin-like growth factor receptor is present in rat serum[J].Proc Natl Acad Sci U S A,1987,84(21):7720-7724.

[29]MacDonald RG,Tepper MA,Clairmont KB,et al.Serum form of the rat insulin-like growth factorⅡ/mannose 6-phosphate receptor is truncated in the carboxyl-terminal domain[J].J Biol Chem,1989,264(6):3256-3261.

[30]Valenzano KJ,Remmler J,Lobel P.Soluble insulin-like growth factorⅡ/mannose 6-phosphate receptor carries multiple high molecular weight forms of insulin-like growth factorⅡin fetal bovine serum[J].J Biol Chem,1995,270(27):16441-16448.

[31]Zaina S,Squire S.The soluble type 2 insulin-like growth factor(IGF-Ⅱ)receptor reduces organ size by IGF-Ⅱ-mediated and IGF-Ⅱ-independent mechanisms[J].J Biol Chem,1998,273(44):28610-28616.

[32]Xu Y,Papageorgiou A,Polychronakos C.Developmental regulation of the soluble form of insulin-like growth factor-Ⅱ/mannose 6-phosphate receptor in human serum and amniotic fluid[J].J Clin Endocrinol Metab,1998,83(2):437-442.

[33]Costello M,Baxter RC,Scott CD.Regulation of soluble insulin-like growth factorⅡ/mannose 6-phosphate receptor in human serum:measurement by enzyme-linked immunosorbent assay[J].J Clin Endocrinol Metab,1999,84(2):611-617.

[34]Roberts CT Jr,Lasky SR,Lowe WL Jr,et al.Molecular cloning of rat insulin-like growth factor I complementary deoxyribonucleic acids:differential messenger ribonucleic acid processing and regulation by growth hormone in extrahepatic tissues[J].Mol Endocrinol,1987,1(3):243-248.

[35]Chrysis D,Calikoglu AS,Ye P,et al.Insulin-like growth factor-Ⅰoverexpression attenuates cerebellar apoptosis by altering the expression of Bcl family proteins in a developmentally specific manner[J].J Neurosci,2001,21(5):1481-1489.

[36]Hwa V,Oh Y,Rosenfeld RG.The insulin-like growth factor-binding protein(IGFBP)superfamily[J].Endocr Rev,1999,20(6):761-787.

[37]Tran D,Bergholz J,Zhang H,et al.Insulin-like growth factor-1 regulatestheSIRT1-p53pathwayincellularsenescence[J].Aging Cell,2014,13(4):669-678.

[38]Selman C,Lingard S,Choudhury AI,et al.Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice[J].FASEB J,2008,22(3):807-818.

[39]Hoeflich A,Reisinger R,Lahm H,et al.Insulin-like growth factorbinding protein 2 in tumorigenesis:protector or promoter[J].Cancer Res,2001,61(24):8601-8610.

[40]Wheatcroft SB,Kearney MT,Shah AM,et al.IGF-binding protein-2 protects against the development of obesity and insulin resistance[J].Diabetes,2007,56(2):285-294.

[41]Hu D,Pawlikowska L,Kanaya A,et al.Serum insulin-like growth factor-1 binding proteins 1 and 2 and mortality in older adults:the health,aging,and body composition study[J].J Am Geriatr Soc,2009,57(7):1213-1218.

[42]Šunderic'M,Miljuš G,Nedic'O.Interaction of insulin-like growth factor-binding protein 2 with α2-macroglobulin in the circulation[J].Protein J,2013,32(2):138-142.

[43]Kim KS,Kim MS,Seu YB,et al.Regulation of replicative senescence by insulin-like growth factor-binding protein 3 in human umbilical vein endothelial cells[J].Aging Cell,2007,6(4):535-545.[44]Elzi DJ,Lai Y,Song M,et al.Plasminogen activator inhibitor1-insulin-like growth factor binding protein 3 cascade regulates stress-induced senescence[J].Proc Natl Acad Sci USA,2012,109(30):12052-12057.

[45]Kim KS,Seu YB,Baek SH,et al.Induction of cellular senescence by insulin-like growth factor binding protein-5 through a p53-dependent mechanism[J].Mol Biol Cell,2007,18(11):4543-4552.

[46]Kojima H,Kunimoto H,Inoue T,et al.The STAT3-IGFBP5 axis is critical for IL-6/gp130-induced premature senescence in human fibroblasts[J].Cell Cycle,2012,11(4):730-739.

[47]Severino V,Alessio N,Farina A,et al.Insulin-like growth factor binding proteins 4 and 7 released by senescent cells promote premature senescence in mesenchymal stem cells[J].CeⅡDeath Dis,2013,7(4):e911.

[48]Wajapeyee N,Serra RW,Zhu X,et al.Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7[J].Cell,2008,132(3):363-374.

[49]Scurr LL,Pupo GM,Becker TM,et al.IGFBP7 is not required for B-RAF-induced melanocyte senescence[J].Cell,2010,141(4):717-727.

[50]Wajapeyee N,Serra RW,Zhu X,et al.Role for IGFBP7 in senescence induction by BRAF[J].Cell,2010,141(5):746-747.

[51]Ungvari Z,Csiszar A.The emerging role of IGF-1 deficiency in cardiovascular aging:recent advances[J].J Gerontol A Biol Sci Med Sci,2012,67(6):599-610.

[52]Hausenloy DJ,Yellon DM.Myocardial ischemia-reperfusion injury:a neglected therapeutic target[J].J Clin Invest,2013,123(1):92-100.

[53]Berryman DE,Glad CA,List EO,et al.The GH/IGF-1 axis in obesity:pathophysiology and therapeutic considerations[J].Nat Rev Endocrinol,2013,9(6):346-356.

[54]Juul A,Scheike T,Davidsen M,et al.Low serum insulin-like growth factor I is associated with increased risk of ischemic heart disease:a population-based case-control study[J].Circulation,2002,106(8):939-944.

[55]Laughlin GA,Barrett-Connor E,Criqui MH,et al.The prospective association of serum insulin-like growth factor I(IGF-I)and IGF-binding protein-1 levels with all cause and cardiovascular disease mortality in older adults:the Rancho Bernardo Study[J].J Clin Endocrinol Metab,2004,89(1):114-120.

[56]Troncoso R,Ibarra C,Vicencio JM,et al.New insights into IGF-1 signaling in the heart[J].Trends Endocrinol Metab,2014,25(3):128-137.

[57]Vasan RS,Sullivan LM,D'Agostino RB,et al.Serum insulin-like growth factor I and risk for heart failure in elderly individuals without a previous myocardial infarction:the Framingham Heart Study[J].Ann Intern Med,2003,139(8):642-648.

[58]Conti E,Andreotti F,Sciahbasi A,et al.Markedly reduced insulinlike growth factor-1 in the acute phase of myocardial infarction[J].J Am Coll Cardiol,2001,38(1):26-32.

[59]Palmeiro CR,Anand R,Dardi IK,et al.Growth hormone and the cardiovascular system[J].Cardiol Rev,2012,20(4):197-207.

[60]Friedrich N,Haring R,Nauck M,et al.Mortality and serum insulin-like growth factor(IGF)-1 and IGF binding protein 3 concentrations[J].J Clin Endocrinol Metab,2009,94(5):1732-1739.

[61]Granata R,Isgaard J.Cardiovascular Issues in Endocrinology[M].Front Horm Res,Basel,Karger,2014:107-124.

[62]Higashi Y,Pandey A,Goodwin B,et al.Insulin-like growth factor-1 regulates glutathione peroxidase expression and activity in vascular endothelial cells:implications for atheroprotective actions of insulinlike growth factor-1[J].Biochim Biophys Acta,2013,1832(3):391-399.

[63]Burge R,Dawson-Hughes B,Solomon DH,et al.Incidence and economic burden of osteoporosis-related fractures in the United States,2005-2025[J].J Bone Miner Res,2007,22(3):465-475.

[64]Zhang M,Xuan S,Bouxsein ML,et al.Osteoblast-specific knockout of the insulin-like growth factor(IGF)receptor gene reveals an essential role of IGF signaling in bone matrix mineralization[J].J Biol Chem,2002,277(46):44005-44012.

[65]Kubota T,Elalieh HZ,Saless N,et al.Insulin-like growth factor-1 receptor in mature osteoblasts is required for periosteal bone formation induced by reloading[J].Acta Astronaut,2013,92(1):73-78.

[66]Sjögren K,Sheng M,Movérare S,et al.Effects of liver-derived insulin-like growth factor I on bone metabolism in mice[J].J Bone Miner Res,2002,17(11):1977-1987.

[67]Courtland HW,Elis S,Wu Y,et al.Serum IGF-1 affects skeletal acquisition in a temporal and compartment-specific manner[J].PLoS One,2011,6(3):e14762.

[68]Courtland HW,Kennedy OD,Wu Y,et al.Low levels of plasma IGF-1 inhibit intracortical bone remodeling during aging[J].Age(Dordr),2013,35(5):1691-1703.

[69]Gong Z,Kennedy O,Sun H,et al.Reductions in serum IGF-1 during aging impair health span[J].Aging Cell,2014,13(3):408-418.

[70]Ashpole NM,Herron JC,Mitschelen MC,et al.IGF-1 regulates vertebral bone aging through sex-specific and time-dependent mechanisms[J].J Bone Miner Res,2016,31(2):443-454.

[71]Liu JM,Zhao HY,Ning G,et al.IGF-1 as an early marker for low bone mass or osteoporosis in premenopausal and postmenopausal women[J].J Bone Miner Metab,2008,26(2):159-164.

[72]Paccou J,Dewailly J,Cortet B.Reduced levels of serum IGF-1 is related to the presence of osteoporotic fractures in male idiopathic osteoporosis[J].Joint Bone Spine,2012,79(1):78-82.

R392.6

A

2095-6894(2016)12-01-06

2016-09-26;接受日期:2016-10-12

国家自然科学基金资助项目(81670736,81572983);陕西省国际科技合作与交流计划项目(2016KW-002)

付建芳.副主任医师.Tel:029-84771305 E-mail:jianff@fmmu.edu.cn

涂艳阳.博士,副教授,副主任医师.Tel:029-84777469

E-mail:tu.fmmu@gmail.com

猜你喜欢
生长因子受体胰岛素
α7-烟碱乙酰胆碱受体在肺癌发生、发展及治疗中的作用
维生素D受体或是糖尿病治疗的新靶点
自己如何注射胰岛素
作用于GABA受体杀虫剂的代谢、作用机制及开发研究
胰岛素拆封前后保存有别
胰岛素笔有哪些优缺点?
血管内皮生长因子在非小细胞肺癌中的表达意义
鼠神经生长因子对2型糖尿病相关阿尔茨海默病的治疗探索
血管紧张素Ⅱ及其受体在疼痛中的研究进展
碳酸酐酶Ⅲ、表皮生长因子受体在肺腺癌患者中的表达及其临床意义