浅谈重油罐的边柱葫芦提升倒装法

2016-07-01 04:00黄春平成都建筑材料工业设计研究院有限公司四川成都610051
新世纪水泥导报 2016年1期
关键词:罐顶罐壁重油

黄春平成都建筑材料工业设计研究院有限公司,四川 成都 610051



浅谈重油罐的边柱葫芦提升倒装法

黄春平
成都建筑材料工业设计研究院有限公司,四川成都610051

摘要重油作为替代煤粉在水泥生产线作为燃料,特别是在中东产油国家使用更为广泛。重油罐作为储存重油的设备,重油罐的施工质量和施工进度至关重要。埃及某水泥厂建设,其重油罐采用边柱葫芦提升倒装法安装,实践中该法施工快,质量好。

关键词水泥厂重油罐锥顶罐边柱倒装法

0 引言

在原油价格持续处于低位的形势下,加之重油喷射系统比较安全,越来越多的中东富油国家使用重油作为燃料,如沙特、阿联酋、伊拉克、埃及等。重油储存装置——重油罐(见图1),结构形式为锥形钢罐,属于固定顶储罐类别中的无支撑式锥顶罐。重油罐一般采用正装或倒装法安装,倒装法具体讲,就是边柱倒装法,边柱倒装法分为边柱液压提升倒装法和边柱葫芦提升倒装法。笔者参加了埃及某水泥厂建设,其重油罐采用边柱葫芦提升倒装法安装,实践中该法施工快、质量好。本文在介绍熟料煅烧对重油性能要求的基础上,详细介绍该罐的边柱葫芦提升倒装法。

图1 重油罐示意图

1 熟料煅烧对重油性能的要求

重油,又称燃料油,呈暗黑色液体,主要是以原油提取汽油、柴油后的剩余重质油,由常压油,减压渣油、裂化渣油、裂化柴油和催化柴油等为原料调合而成。重油的比重一般在0.82~0.95,热值在(4.18~4.6)×104kJ/kg。其成分主要是碳氢化合物,含有大量的氮、硫、蜡质以及金属,及微量的无机化合物。其特点是分子量大、粘度高,难挥发,基本不流动。它的燃烧温度高,火焰的辐射能力强,是水泥熟料生产的优质燃料。

对用作燃料的重油,除要求有高发热量外,还要求:

(1)粘度低。以便于管道输送,有利于喷吹雾化改善燃烧效率;重油含石蜡量多而粘度大,使用时需进行预热,使达到100 ℃或100 ℃以上,以降低粘度。

(2)凝固点要低。一般重油凝固温度为22~36 ℃;对石蜡量多、凝固点高的重油,应采取适当的加热措施,以便于运输和装卸。

(3)闪点温度高。可采用较高的预热温度,便于输送和雾化,一般重油的闪点在180~330 ℃,都高于需要预热的温度。

(4)油中的机械杂质和含水量要少。杂质多和含水量高,不仅降低了重油的发热量,而且使用时会引起烧嘴堵塞和火焰波动,故需进行过滤,如将油和水形成乳状液,则可以改善燃烧效果。

(5)含硫要低。一般含硫量为0.15%~0.30%,但也有少数重油含硫高达2%,使用中会造成不良后果。

2 重油作为熟料锻烧燃料的优势

在产油量丰富的地区,如沙特、阿联酋、伊拉克等中东国家,广泛使用重油作为燃料生产水泥,这是重油与煤粉相比存在优势的结果。

重油和煤粉相比,重油燃烧的热值更高,重油作为石油冶炼的副产品之一,在富油的中东地区,相比之下更加经济实惠。而且煤粉制备和储存的时候,很容易自燃和引起爆炸,特别是在夏季温度特别高的中东地区,重油比煤粉制备更加安全,所以应用更为广泛。

3 重油罐的安装施工

此项目的重油罐共计4个,罐体的内径为20 m,每个罐体的容积为4 000 m3。罐体一共分为八层,罐体的材料为Q245- R,采用3 m高的定尺板,方便组对和焊接。根据储罐顶部的结构,此重油罐属于固定顶储罐类别中的无支撑式锥顶罐,以工字钢和槽钢为骨架,然后上覆钢板,采用边柱倒装法进行安装。

边柱倒装法,即利用均布在罐壁内侧带有提(顶)升机构的边柱提升与罐壁板下部临时胀紧固定的胀圈,使上节壁板随胀圈一起上升到预定高度,组焊第二圈罐壁板。然后松开胀圈,降至第二圈罐壁板下部胀紧、固定后再次起升。如此反复,直至组焊完。边柱倒装法分为边柱液压提升倒装法和边柱葫芦提升倒装法。此重油罐使用的是边柱葫芦提升倒装法(见图2)。

图2 边柱葫芦提升倒装法示意图

3.1程序与要求

(1)在罐壁板内侧沿周向均匀设置提升柱,提升柱顶部设置手拉葫芦或电动葫芦。提升柱的数量、结构、规格根据提升需要的最大重量计算确定,背向壁板一侧设置防倾覆斜拉撑。

(2) 设置人员进出罐内的通道。

(3) 胀圈用千斤顶或加紧丝与罐壁胀紧。

(4) 起吊过程应平稳,各起吊点应同步上升。

3.2重油罐的主要施工步骤

(1)土建基础的施工要求和验收。土建基础的缓冲层对于重油罐的减震和防锈极其重要,因为重油罐的底板是一层搭接一层焊接起来的,必须保证底板与基础之间保持密实。为了达到缓冲层的效果,基础一共分为四层。从下到上第一层为承重的钢筋混凝土。第二层为连续压实的砂砾层。第三层连续浇注的50 mm厚的沥青砂浆层,由10%稀释剂、10%波特兰水泥和80%的干沙组成。第四层为基础表面铺设的厚20 mm的连续沥青涂层,这一层沥青涂层的主要目的就是防锈和缓冲重油罐底板形成空洞,同时基础表面做1%的锥形放坡,基础合格后进行后续的安装工作(见图3)。

(2)罐底板铺设和焊接。首先铺设弓形边缘板,固定后点焊,然后再铺设中幅板,其余的钢板分别搭接形成阶梯形状铺满,要保证和基础之间密实。底板焊接顺序为:中幅板焊缝→罐底边缘板对接焊缝靠边缘的300 mm部位→罐底与罐壁板连接的角焊缝(在底圈壁板纵焊缝焊完后施焊)→边缘板剩余对接焊缝→边缘板与中幅板之间的收缩缝。

图3 土建基础和罐底板铺设示意图

(3)顶层罐壁组对焊接和罐顶骨架安装。底板铺设完成后,进行顶层罐壁的组对和焊接(见图4)。然后进行罐顶骨架的安装,先设置临时支撑再将罐顶的骨架安装(见图5),要确保锥形罐顶的角度保持一致。

(4)手拉葫芦装置安装和提升第一层罐体和其他各层罐体的安装。根据边柱倒装法的施工方法进行手拉葫芦装置的安装,包括胀圈的组对焊接(见图6)以及立柱和斜撑的组对焊接(见图7)。立柱的高度必须要确保能够顺利提升两层罐壁的高度,手拉葫芦的额定载重量要经过核算能够满足使用要求。手拉葫芦装置安装调试后,提升第一层罐壁,提升的时候,务必保持各个手拉葫芦的受力保持一致。接着,按照同样的方法进行剩余七层罐体的安装。各层罐体之间焊接采用手工电弧焊施工,顺序为先焊纵向焊缝,后焊环向焊缝,即当焊完相邻两圈壁板的纵向焊缝后,再焊其间的环向焊缝。焊工应均匀分布,并沿同一方向施焊。

图4 顶层罐壁组对焊接示意图

图5 罐顶骨架组对安装示意图

图6 边柱葫芦提升装置胀圈安装组对示意图

图7 边柱葫芦提升装置示意图

(5)罐体内部热油管道支架和热油管道安装,以及罐顶盖安装。罐体按照倒装法提升完毕后,将罐壁与罐底板之间焊接。为了保证罐内焊接时产生的有害气体的流通,务必在罐顶盖安装之前进行热油管道的施工(见图8)。施工完毕后,做好直爬梯和走道楼梯,再进行顶盖和罐顶栏杆的安装,同时按照电气、工艺等专业的要求进行各种测量孔的开设和防雷接地装置的安装。

图8 重油罐热油管道和支架示意图

(6)重油罐施工结束后,要按照相关规定进行充水试验。充水试验前,所有附件及其他与罐体焊接的构件全部完工并检验合格。—般情况下,充水试验采用洁净淡水。充水试验中应进行基础沉降观测。在罐壁下部圆周每隔10 m左右,设一个观测点 ,点数宜为4 的倍数,且不得少于4 点。在充水试验中,如基础发生设计文件不允许的沉降,应停止充水,待处理后方可继续进行试验。充水和放水过程中,应打开透光孔,且不得使基础浸水。

罐底严密性试验:充水进行试验,观察基础周边。合格标准:无渗漏。

罐壁强度及严密性试验:充水至最高设计液面试验,保 持 48 h。罐壁无渗漏、无异常变形,方合格。

固定顶强度及严密性试验:罐内充水到最高设计液位下l m ,将所有开孔封闭,缓慢充水升压,升到试验压力时,暂停充水,在罐顶涂以肥皂水检查。试验后立即将罐顶孔开启与大气相通,恢复到常压。合格标准:罐顶无异常变形,焊接接头无渗漏。

固定锥形顶的稳定性试验:充水到设计最高液位,将所有开孔封闭,用放水方法进行试验,缓慢降压,达到试验负压值时,停止放水,观察罐顶。试验后立即将罐顶孔开启,与大气相通,恢复到常压。合格标准:罐顶无异常变形。

4 重油罐安装施工的注意事项

罐壁的板材尺寸是根据罐壁周长计算而采购的定尺板,对卷制要求很严格,卷板机卷制的时候一定要保证尺寸,不能对罐壁板材进行切割。

两层罐体之间焊接时需要按照要求打坡口,需使用J507 低氢钠型焊条进行焊接,焊前焊条须经300~350 ℃烘焙1 h,随烘随用,焊前必须清除焊件的铁锈、油污、水分等杂质,焊接时须用短弧操作,以窄焊道为宜。随机抽取20%的焊缝进行着色渗透试验(PT)。焊缝处理后续涂刷专用的焊缝油漆,以保护焊缝。

为了保证重油罐的使用寿命,铺板之前,需要对以下部件喷涂专用防锈漆:底板,罐顶骨架,顶盖内壁,热油管道和支架,与底板焊接的离地30 cm以内底层罐壁。对罐体外壁和顶盖外壁喷涂普通油漆,油漆喷涂三层,分别为底漆、中间漆、蓝色面漆,总漆膜厚度为240μ m。

5 结束语

该项目的重油罐采用边柱葫芦提升倒装法安装,和同规模的老线采用正装法施工的重油罐相比,施工周期缩减为一个月,安装质量好,过程控制中既安全又有条不紊,而正装法施工的周期为两个月。边柱葫芦提升倒装法是一种经济适用的储罐施工方法。

中图分类号:TQ172.6

文献标识码:B

文章编号:1008-0473(2016)01-0073-04DOI编码:10.16008/j.cnki.1008-0473.2016.01.016

收稿日期:(2015- 09- 29)

猜你喜欢
罐顶罐壁重油
基于EEMUA 159的常压储罐罐顶风险评估
重油加氢处理催化剂级配方法和重油加氢处理方法
船用调质重油燃烧及减排技术的研究进展
中美规范大型储罐外压失稳设计对比分析
GB50341和API650的罐壁设计比较
大型LNG储罐罐顶气压顶升作业动力系统的设计与控制
船舶使用850cSt重油的设计研究
尖头碎片撞击小尺寸储罐的模拟实验*
基于包边角钢加强区的20 000 m3内浮顶油罐罐顶结构优化设计
化工生产中大型贮罐的罐顶结构设计