电力电气自动化的电力系统及元件技术的应用分析

2016-12-27 15:49刘杨
科学与财富 2016年29期
关键词:电力系统应用

刘杨

摘 要:市场经济发展对企业电力电气自动化程度提出了更为严格的要求,为进一步提高电生产安全性,改善产品质量并优化企业市场份额,应当积极采取有效措施提高电力电气自动化水平,改善生产劳动条件,提高劳动生产率。本文简要探讨电力电气自动化中电力系统及元件技术的实际应用情况,仅供相关人员参考。

关键词:电力电气自动化;电力系统;元件技术;应用

就当前电力市场发展实际来看,电气企业若想要实现稳定持续发展,应当积极运用现代自动化控制技术及产品,提高火电厂电气自动化运行的经济性和稳定性,实现能源的合理利用,降低资源消耗,全面提高企业综合竞争力,推进电力企业自动化生产的顺利实现。电力系统及元件技术在电力电气自动化运行中具有良好的应用价值,有助于推进电力企业综合效益的提升。

1 电力系统自动化技术概况

1.1 电力系统自动化技术的概念

电力系统自动化技术指的是运用各种具有自动检测功能和决策控制功能的装置,通过数据传输系统和信号系统将电力系统的每个元件、局部系统或者是全系统进行自动监控、协调控制的技术,确保电力系统能够安全稳定的运行,保证供电的可靠性。

1.2 电力自动化系统的组成要素

一是变电站自动化技术。变电站是将一些设备组装起来,切断或者接通电压的系统装置,在电力系统中,配电站是配电和输电的集中点,它能够更好的监控电力的运输供应,保证整个过程的安全高效和可靠经济,因此说变电站自动化技术尤为重要。变电站自动化技术是采用先进的计算机技术、现代通信技术、电子技术以及信息处理技术,实现对变电站的二次设备的重新组合和优化设计,对变电站全部设备的运行都能够实现实时监控,这种综合性的自动化监测系统能够提高变电站运行的稳定性,降低运行维护的成本,实现输电过程的高质量,保证经济效益。

二是配电网自动化技术。配电网主要是由架空线路、电缆、配电变压器等设备组成的,在电网中起到分配电脑呢过的作用。长期以来,配电网只能够采取手工操作的控制方法,随着技术的进步,逐渐能够运用独立的孤岛自动化技术,但是对电能的分配方面还是存在不足之处,因此说,配电网自动化技术对于电能的分配和监控十分重要。配电网自动化主要包括馈线自动化和自动制图、设备管理、信息分析和配电网分析自动化,它依靠大量的智能终端、丰富的后台软件和数据库资料支持,通过信息技术的带动,实现配电网自动化,确保了对电能的充分利用。

三是电力系统调度自动化技术。电力系统调度自动化技术是目前发展最快的技术之一,其功能的强大性能够确保电力系统在运行过程中的准确性、可靠性和经济性。电力系统的数据采集和监控功能是调度自动化的基础,此外,电力系统的市场运营和决策也是不可忽略的环节。

2 电力电气自动化元件技术的实际应用

现代社会经济发展推进了电力行业的进步,基于现代科学技术的电力电子技术和微电子技术得以形成和有效应用,原有模式在的电力传动控制理念难以满足现代电力电气自动化系统的设备控制需求,此种情况下,需要不断创新应用新技术,以保证电力电气自动化系统的稳定有序运行。

2.1 全控型电力电气开关

在电力电气自动化系统中,晶闸管是第一代电力电子元器件,属于半控型,直至今日在直流与交流的传动控制系统中仍得到广泛应用。随着现代科学技术的发展,交流变频技术不断进步,全控式的电力电子开关逐渐取代了半控型的晶闸管,作为第二代电力电子元器件,以GTO、GTR和P-MOSEEF等为主要代表。电力电气自动化系统中,现阶段的电流/电压的定额和开关时间不同的条件下,各种元器件的实际应用价值也存在一定差异。

2.2 变换器电路实现低频向高频的转换

随着现代科学技术的不断发展,电力电气元器件不断更新,变换器电路也发生一定程度的转变。传统的电力电气系统运行条件下,以普通晶闸管作为电力电子元器件,通过相控整流实现直流传功。在交流变频器主要通过交-直-交方式实现。直至第二代电力电子元器件出现,PWM变换器逐渐得到广泛应用,一定程度上提高了变频器功率因数,促进以往条件在低频区电动机转矩脉动问题得以有效解决,具有良好的应用价值。就实际应用情况来看,PWM逆变器内部存在较大的电流和电压,其谐波分量产生较强的转矩脉动作用,一旦其作用于电动机的定转子上,导致电机绕组产生振动并发出巨大声响,严重影响系统的电力电气自动化系统的正常运行。为促进该项问题的有效解决,在应用变换器的过程中可以结合系统运行特点适度调高开关频率,但此种方式并不十分完美,一旦开关频率超出人耳感知范围,电力电子元器件长期处于高电压大电流运行条件在,极易出现关断情况,对开关造成严重损耗,严重影响开关的使用寿命。

2.3 通用变频器的使用

在电力系统运行过程中,通常我们所提到的通用变频器主要是指批量化、系列化及中小功率的变频器。第一代变频器大多采用16位CPU,仅具备普通功能,以U/F控制型为奠定代表;第二代变频器主要采用32位的DSP或双16位的CPU对系统进行科学化控制,以高功能的U/F控制型为代表,通过对转差补偿器、磁通补偿器等的有效利用,其变频器逐步发展,具有无跳闸功能,在电力电气自动化系统应用中也被称作无跳闸变频器。当前市场环境下,无跳闸变频器得到广泛应用,占据较大的市场份额。第三代变频器为高动态性能矢量控制型变频器,通过对现代科学技术的有效运用,以数字化实现系统控制,运用相关软件实现参数设定,具有动态性特征,能够实现自适应控制。在电力电气自动化系统中,通过无速度传感器矢幼控制和有速度传感器矢量控制等,自动优化闭环控制。现代科学技术不断发展,电力半导体器件以IGB为主要发展趋势,通过单片机控制技术的合理应用,促进变频器的可操作性和可维修性等功能得以实现。

2.4 集成电路、单片机及工控计算机的发展

以MCS-51为主要代表的8位机在目前虽然仍占据着主导地位,但是它的功能非常简单,并且指令集比较短小,但其可靠性高,保密性好,从而适合大批量地用于生产PIC系列的单片机以及CTMS97C。

结束语

自动化控制系统逐渐在社会生产各领域内得到广泛应用,电力行业也不例外,通过对电力电气自动化的电力系统及元件及时进行科学化应用,有效提高了电力系统运行效率,满足市场发展需求,为电力行业的稳定发展及综合效益的提升提供可靠的保证。可以说,电力电气自动化控制是社会经济运行的重要技术手段,对于国家电力电子行业发展和社会科技进步都具有重要意义。

参考文献

[1]孟建伟.电力电气自动化元件技术的运用[J].科技创业家,2013,29(21):13-14.

[2]杨智文,蔡诗文.数字技术在电力电气自动化中的应用[J].电子技术与软件工程,2014,19(21):6-7.

猜你喜欢
电力系统应用
信息时代的电力系统信息化经验谈
探讨电力系统中配网自动化技术
配网自动化技术的应用探讨
多媒体技术在小学语文教学中的应用研究
分析膜技术及其在电厂水处理中的应用
GM(1,1)白化微分优化方程预测模型建模过程应用分析
煤矿井下坑道钻机人机工程学应用分析
气体分离提纯应用变压吸附技术的分析
会计与统计的比较研究