双转台五轴数控机床误差的动态实时补偿研究

2017-03-30 15:38孙念明王波
中国市场 2017年8期
关键词:误差

孙念明+王波

[摘要]双转台五轴数控机床是进行精密、复杂工件加工的主要设备。由于其内部结构较为复杂,导致误差补偿设计难度较大。文章以双转台五轴数控机床为基础,相应建立移动轴、旋转轴运动数学模型,将工件坐标系当作基础坐标系,通过齐次坐标系变换理论,对其轴运动在基础坐标系中的误差表达式进行推导。针对五轴机床设备两种轴的运动耦合情况,相应提出一种分步实施补偿方法,即优先完成姿态误差补偿再进行误差补偿,尽量调整工件姿态与理想姿态一致。仿真实践证明该方法有助于提高加工精度,可有效避免因补偿导致的运动干涉问题,具有较高的有效性和可行性。

[关键词]五轴数控机床;误差;实时动态补偿;运动模型研究

[DOI]10.13939/j.cnki.zgsc.2017.08.204

双转台五轴数控机床是目前进行精密、复杂工件加工的主要设备,其内部同时存在移动轴和旋转轴,一次装夹即可完成形状较为复杂的自由曲面加工作业,缩短加工周期的同时,有效避免了多次加工可能造成的误差问题,从根本上提高了工件加工质量。在多种因素的共同影响下,五轴数控机床实际工作中不可避免地存在机床误差,并且由于五轴数控机床多出两根旋转轴、内部结构更加复杂,导致其误差元素众多且更加复杂。处于工件加工质量和经济性考虑,对五轴数控机床进行误差补偿具有重要的现实意义。本文针对五轴数控机床内部轴的运动进行了细致分析,相应提出了一种误差补偿方法,具体内容如下。

1五轴数控机床结构特点分析

双转台五轴数控机床是五轴机床的一种常见形式,内部拥有两个旋转轴和三个移动轴,旋转轴均存在于工件运动链一侧,具有总体刚性高、工艺性能优良、坐标行程范围广等特点。

2五轴数控机床轴的运动分析

出于数控编程便捷性考虑,将工件坐标系作为运动分析过程中的基础坐标系,其中各运动轴和刀具的运动均表示成工件坐标系中的变量。本组方法中,五轴数控机床的误差补偿,主要通过针对运动轴输入相应的补偿值,调整工件姿态和刀具位置实现。具体坐标变化关系如图1所示。

首先建立工件坐标系、刀具坐标系以及参考坐标系,其中工件坐标系OWxWyWzW,对应刀位数据源文件;刀具坐标Otxtytzt,表示与刀具固联对应的坐标系,刀尖即为原点;参考坐标系Omxmymzm,参考坐标系表示与旋转轴C固联对应的坐标系,A、C两旋转轴的交点就是该坐标系的原点。

建立工件坐标系之后,其中任意一点对应矢量均可以用V表示,方向矢量和位置矢量可分别表示为(x,y,z)和(i,j,k)两种形式,通过下标具体区分不同的状态和位置。

3双转台五轴数控机床误差的解耦补偿分析

在机床实际工作过程中,工件加工精度是由工件和刀尖的相对位置决定的。对于工件加工的任意时刻,如掌握工件坐标系中的刀尖O1的坐标信息、参考坐标系原点O的坐标信息以及刀尖的实际方向矢量信息,即可借助坐标系关系获得五个运动轴的实际位移值。对比五个运动轴的理想位移值和实际位移值,如二者存在偏差则表示,此状态下进行加工会导致工件尺寸误差,记为Δ。而各运动轴实际位移值与理论位移值间的差值,就是具体的补偿误差,在相应的数控程序中输入方向相反、大小相同的补偿值,即可抵消误差,提高工件加工精度。

就双转台五轴数控机床而言,对其操作进行误差补偿的难点主要在于,其同时拥有两个旋转轴。在机床工作过程中,其旋转轴和移动轴同时进行运动,旋转轴的工作转动将直接影响工件在移动轴方向的实际运动情况,也就是说即使移动轴坐标与理论位置一致,在旋转轴位置调整过程中,也会对工作台位置造成影响,即在平移运动和转动运动间存在耦合,針对这一情况,简单的轴补偿不发满足机床实际补偿要求,必须充分考虑到移动轴和旋转轴间的运动影响关系,优先进行解耦处理,在进行分布补偿,才能有效提高误差补偿的准确性和有效性。分步补偿的具体步骤为,先完成姿态补偿,在完成位置补偿,实际过程如图2所示。

在图2中,位置1表示工件理想位置,位置2表示工件实际位置。在实际补偿过程中,先调整转动轴对工件姿态进行调整,使其方向矢量保持与理论状态一致,即调整至位置3。受旋转轴与运动轴间的耦合影响,工件对应的位置矢量也会发生一定的变化,此时通过调整移动轴即可完成位置补偿,除原始位置误差外,还需补偿因转动轴运动导致的新误差,最终完成对工件的误差补偿。

3.1姿态补偿调整分析

姿态补偿调整是指位置2调整至位置3的过程,利用坐标系关系可表示为(ic,jc,kc)调整至(ie,je,ke),从而形成全新的刀尖矢量,记为Vc。

4仿真分析

曲面轮廓工件是双转台五轴数控机床加工的典型零件。借助UG软件构建相应的曲面轮廓工件实体造型,并在此基础上进行加工验证,记录生成的刀位数据文件信息。

实际操作过程中,工作人员在加工工件轮廓表面选取采样点10个,通过相应的数学计算,得出准确的零件尺寸误差。随后,根据本文阐述的分步误差补偿方法,建立相应的误差补偿数学模型并编制相应的补偿程序。将采样点的计算误差参数依次输入建立的模型程序,核算各采样点的位置补偿误差和姿态补偿误差,随后将补偿误差输入至原始的刀位文件,并相应生成修改完成的刀位文件,最终得到相应的零件补偿仿真模型。

仿真实践分析可得出以下两点结论:一是分步误差补偿方法可有效降低机床误差最大值,同时使残余误差分布变得更加均匀,即有效减小均方差;二是就五轴联动机床而言,对其进行误差补偿还需综合考虑不同轴的耦合关系,优先进行姿态误差补偿、随后进行位置误差补偿,以提高误差补偿准确度。

5结论

综上所述,五轴数控机床作为现阶段进行复杂工件加工的主要手段,在数控机床领域占据重要地位。受其内部结构复杂性影响,进行误差补偿具有一定的难度。本文从五轴数控机床中不同轴的运动入手,相应提出了先进行姿态误差补偿、后进行位置补偿的误差补偿方法,经仿真实践证明,具有较高的可行性和有效性。

参考文献:

[1]张宏韬.双转台五轴数控机床误差的动态实时补偿研究[D].上海:上海交通大学,2011.

[2]姜辉.五轴数控机床几何与热误差实时补偿关键技术及其试验研究[D].上海:上海交通大学,2014.

[3]张宏韬,杨建国,姜辉,等.双转台五轴数控机床误差实时补偿[J].机械工程学报,2010(21).

[4]何振亚.五轴数控机床几何与热致空间误差检测辨识及模型研究[D].杭州:浙江大学,2014.

[5]张毅.数控机床误差测量、建模及网络群控实时补偿系统研究[D].上海:上海交通大学,2013.

猜你喜欢
误差
电子天平偏载误差的检定与处理研究
角接触球轴承接触角误差控制
Beidou, le système de navigation par satellite compatible et interopérable
压力容器制造误差探究
Lower bound estimation of the maximum allowable initial error and its numerical calculation
精确与误差
一类奇异积分关于积分曲线摄动的误差估计
压力表非线性误差分析与调整