基于卷积神经网络的图像分类技术研究与实现

2017-04-18 13:08王超
电脑知识与技术 2016年35期
关键词:图像分类卷积神经网络深度学习

王超

摘要:图像分类问题一直是计算机视觉的一个核心问题,而随着深度学习的发展,也为我们解决图像分类中图像特征提取问题提供了一种很好的解决方法,通过构建具有隐层的机器学习模型和海量的图像训练数据,来学习更有用的图像特征,从而最终提升图像分类或预测的准确性。该文使用Caffe深度学习框架,构建小型的图像数据库,通过Caffe框架给出的卷积神经网络对数据集进行训练分析,提取目标图像特征信息,最后对目标图像进行预测,并和传统的图像分类算法进行对比,预测的准确率有很大的提升。

关键词:图像分类;深度学习;Caffe框架;卷积神经网络

中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2016)35-0209-03

Research and Implementation of Image Classification Based on Convolution Neural Network

WANG Chao

(Information Engineering Institute,East China University of Technology, Nanchang 330013, China)

Abstract: The problem of image classification has been the core problem in computer vision. A good solution is developed by further study which can solve the problem of extracting image features in image classification. In order to learn image features efficiently, constructing the machine learning model with hidden layer as well as training a large number of image data will eventually promote the accuracy of image classification or prediction. This paper is intended as an in-depth Caffe learning framework to construct a small image data-base. The convolutional neural network provided by Caffe framework will make a training analysis of the data set and then extract the information of target image features. These can be used for the final prediction of the target image. Compared with the traditional image classification algorithm, the accuracy of the prediction will be greatly improved.

Key words: image classification; deep learning; Caffe framework; Convolutional Neural Network

隨着计算机与互联网技术的快速发展,我们已经进入了一个以图像构建的世界。但是面临有海量图像信息却找不到所需要的数据的困境,因而图像分类技术应运而生。通过各种机器学习算法使计算机自动将各类图像进行有效管理和分类,但是由于图像内容包含着大量复杂且难以描述的信息,图像特征提取和相识度匹配技术也存在一定的难题,要使得计算机能够像人类一样进行分类还是有很大的困难。

深度学习是近十年来人工智能领域取得的重要突破,在图像识别中的应用取得了巨大的进步,传统的机器学习模型属于神经网络模型,神经网络有大量的参数,经常会出现过拟合问题,因而对目标检测准确率上比较低。本文采用卷积神经网络框架,图像特征是从大数据中自动学习得到,而且神经网络的结构深由很多层组成,通过重复利用中间层的计算单元来减少参数,在特征汇聚阶段引入图像中目标的显著信信息,增强了图像的特征表达能力。通过在图像层次稀疏表示中引入图像显著信息,加强了图像特征的语义信息,得到图像显著特征表示,通过实验测试,效果比传统的图像分类算法预测的准确度有明显的提升。

1 基于卷积神经网络的图像分类方法

1.1 人工神经网络

人工神经网络(Artificial Neural Network, ANN)是描述生物神经网络运行机理和工作过程的抽象和简化了的数学物理模型,使用路径权值的有向图来表示模型中的人工神经元节点和神经元之间的连接关系,之后通过硬件或软件程序实现上述有向图的运行[1]。目前最典型的人工神经网络算法包括:目前最典型的人工神经网络有BP网络 [2]Hopfield网络[3]Boltzmann机[4]SOFM网络[5]以及ART网络人工神经网络[6],算法流程图如图1所示[7]。

1.2 卷积神经网络框架的架构

Caffe是Convolutional Architecture for Fast Feature Embedding的缩写[8],意为快速特征嵌入的卷积结构,包含最先进的深度学习算法以及一系列的参考模型,图2表示的是卷积神经网络结构图。Caffe深度学习框架主要依赖CUDA,IntelMKL,OpenCV,glog软件以及caffe文件。本文使用的各个软件版本说明,如表1所示。

Caffe深度学习框架提供了多个经典的卷积神经网络模型,卷积神经网络是一种多层的监督学习神经网络,利用隐含层的卷积层和池采样层是实现卷积神经网络特征提取功能,卷积神经网络模型通过采取梯度下降法最小化损失函数对网络中的权重参数逐层反向调节,通过频繁的迭代训练来提高网络的精度。卷积神经网络使用权值共享,这一结构类似于生物神经网络,从而使网络的复杂程度明显降低,并且权值的数量也有大幅度的减少,本文使用这些模型直接进行训练,和传统的图像分类算法对比,性能有很大的提升,框架系统训练识别基本流程如图3表示。

1.3 图像分类特征提取

卷积神经网络的结构层次相比传统的浅层的神经网络来说,要复杂得多,每两层的神经元使用了局部连接的方式进行连接、神经元共享连接权重以及时间或空间上使用降采样充分利用数据本身的特征,因此决定了卷积神经网络与传统神经网络相比维度大幅度降低,从而降低计算时间的复杂度。卷积神经网络主要分为两个过程,分为卷积和采样,分别的对上层数据进行提取抽象和对数据进行降维的作用。

本文以Caffe深度学习框架中的 CIFAR-10数据集的猫的网络模型为例,如图4所示,对卷积神经网络模型进行训练。CIFAR-10是一个标准图像图像训练集,由六万张图像组成,共有10类(分为飞机,小汽车,鸟,猫,鹿,狗,青蛙,马,船,卡车),每个图片都是32×32像素的RGB彩色图像。通过对数据进行提取和降维的方法来提取图像数据的特征。

2 实验分析

将猫的图像训练集放在train的文件夹下,并统一修改成256×256像素大小,并对猫的图像训练集进行标记,标签为1,运行选择cpu进行训练,每进行10次迭代进行一次测试,测试间隔为10次,初始化学习率为0.001,每20次迭代显示一次信息,最大迭代次数为200次,网络训练的动量为0.9,权重衰退为0.0005,5000次进行一次当前状态的记录,记录显示如下图5所示,预测的准度在98%以上。而相比传统的图像分类算法BP神经网络网络的收敛性慢,训练时间长的,网络的学习和记忆具有不稳定性,因而卷積神经网络框架在训练时间和预测准度上具有非常大的优势。

3 结束语

本文使用Caffe深度学习框架,以CIFAR-10数据集中猫的网络模型为例,构建小型猫的数据集,提取猫的图象特征信息,最后和目标猫图像进行预测,并和传统的图像分类算法进行对比,预测的准确率有很大的提升。

参考文献:

[1] 杨铮, 吴陈沭, 刘云浩. 位置计算: 无线网络定位与可定位性[M]. 北京: 清华大学出版社, 2014.

[2] 丁士折. 人工神经网络基础[M]. 哈尔滨: 哈尔滨工程大学出版社, 2008.

[3] McClelland J L, Rumelhart D E, PDP Research Group. Parallel distributedprocessing[J]. Explorations in the microstructure of cognition, 1986, 2.

[4] Hopfield J J. Neural networks and physical systems with emergent collectivecomputational abilities[J]. Proceedings of the national academy of sciences, 1982, 79(8): 2554-2558.

[5] Ackley D H, Hinton G E, Sejnowski T J. A learning algorithm for boltzmannmachines[J]. Cognitive science, 1985, 9(1): 147-169.

[6] Kohonenmaps T. Self-Organized Formation of Topologically Correct Feature Maps[J]. Biological Cybernetics,1982, 43(1): 59-69.

[7] Carpenter G A, Grossberg S. A massively parallel architecture for aself-organizing neural pattern recognition machine[J]. Computer visiongraphics, and image processing, 1987, 37(1): 54-115.

[8] Jia Y, Shelhamer E, Donahue J, et al. Caffe: Convolutional architecture for fast feature embedding[C]//Proceedings of the ACM International Conference on Multimedia. ACM, 2014: 675-678.

猜你喜欢
图像分类卷积神经网络深度学习
基于云计算的图像分类算法
基于深度卷积神经网络的物体识别算法
基于锚点建图的半监督分类在遥感图像中的应用
MOOC与翻转课堂融合的深度学习场域建构
大数据技术在反恐怖主义中的应用展望