再生骨料透水混凝土强度及透水性能试验

2017-09-15 06:18陈守开刘秋常汪伦焰
农业工程学报 2017年15期
关键词:硅粉透水性钢纤维

陈守开,杨 晴,刘秋常,郭 磊,汪伦焰

再生骨料透水混凝土强度及透水性能试验

陈守开1,2,杨 晴1,2,刘秋常1,郭 磊1,2,汪伦焰1,2

(1. 华北水利水电大学水利学院,郑州 450011; 2. 河南省水环境治理与生态修复院士工作站,郑州 450002)

利用再生废弃混凝土骨料制备透水混凝土是目前研究的热点和趋势,其中强度和透水性是其关注及目前亟待突破的关键性能。以废弃的预制混凝土梁构件为再生骨料来源制备透水混凝土,并以水胶比0.3,砂率10%为基准,设计6组配合比,并通过标准养护下的立方体试块试验,研究了单一因素下再生骨料透水混凝土的孔隙率、透水性及其强度性能,其范围分别为孔隙率17.8%~23.8%,渗透系数0.27~0.57 cm/s以及抗压强度4.0~9.63 MPa。结果表明,再生骨料透水混凝土基本性能够满足要求,其中内掺粉煤灰能大幅提高其抗压强度,提高约44%,外掺钢纤维提高透水性,掺入萘系高效减水剂及硅粉的效果不明显。此外,再生骨料透水混凝土的毛细吸水过程与普通混凝土类似,即前期吸水快,后期趋于平缓。

混凝土; 性能;抗压强度;再生骨料透水混凝土;掺合料及外加剂;透水性;孔隙率;毛细吸水

陈守开,杨 晴,刘秋常,郭 磊,汪伦焰. 再生骨料透水混凝土强度及透水性能试验[J]. 农业工程学报,2017,33(15):141-146. doi:10.11975/j.issn.1002-6819.2017.15.018 http://www.tcsae.org

Chen Shoukai, Yang Qing, Liu Qiuchang, Guo Lei, Wang Lunyan. Experiment on strength and permeability of recycled aggregate pervious concrete[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 141-146. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.15.018 http://www.tcsae.org

0 引 言

2012年4月,在《2012低碳城市与区域发展科技论坛》中,“海绵城市”概念首次提出。城市能够像海绵一样,在适应环境变化和应对自然灾害等方面具有良好的“弹性”,下雨时吸水、蓄水、渗水、净水,需要时将蓄存的水“释放”并加以利用。提升城市生态系统功能和减少城市洪涝灾害的发生。由于透水混凝土具有连续孔隙率和高透水性,可以广泛应用于海绵城市的建设当中。此外,还可将其应用于江、河、湖、海等水域和沿岸,起到固沙土、固堤岸、透水作用。

利用再生骨料制备透水混凝土(以下简称再生透水混凝土)不仅可以发挥透水混凝土的功能优势(如透气性、透水性、吸声、隔热等优点),还能够减少建筑垃圾的填埋堆放和天然骨料的消耗。国内外已有一些再生透水混凝土的研究,如孙家瑛等[1]研究了再生集料透水性混凝土的物理力学性能和耐久性能,指出随着集料粒径增大或集灰比的提高抗压和抗折强度均降低,透水性能增加。Zaetang等[2]利用再生粗骨料(粒径4.75~9.5 mm)制备透水混凝土,结果表明随着替代率的增加,再生骨料透水混凝土抗压强度先增加后降低,100%再生骨料透水混凝土的抗压强度与普通透水混凝土基本相同,而劈裂抗拉强度略低于普通透水混凝土。Güneyisi 等[3]研究不同再生粗骨料取代率对透水混凝土性能的影响,并运用GLM-ANOVA进行方差分析,认为影响透水混凝土性能的2个主要因素是再生骨料取代率和水灰比,对于强度、干密度、孔隙率而言,前者影响程度大于后者;对于透水性能和耐磨性而言,后者影响程度大于前者。Sriravindrarajah等[4]研究了不同胶凝材料(水泥、矿渣)、龄期(7、28 d)、骨料(花岗岩、再生混凝土骨料)、骨料粒径(5~13 mm、13~20 mm)以及试件类型(边长150 mm立方体、φ100×200 mm)对透水混凝土性能的影响,结果表明:混凝土抗压强度主要依赖于其内部的孔隙,随着骨料粒径的减小,孔隙率降低,强度增加;在一定孔隙率下,掺入再生骨料导致透水混凝土强度降低,但是对孔隙率和透水性能无显著影响;(再生骨料)透水混凝土的抗压强度与孔隙率及透水系数与孔隙率的关系均服从指数分布。

目前国内外学者关于掺合料及外加剂对再生透水混凝土性能的影响方面尚缺乏系统的研究。为能够改善再生透水混凝土的性能,本文以再生透水混凝土的强度和透水性为目标,分别研究了粉煤灰、硅粉、萘系高效减水剂和钢纤维的影响。此外,以往对普通混凝土毛细吸水过程试验研究较多,鲜有学者对再生透水混凝土有相关研究。本文参考已有经验,自制毛细吸水装置,开展了透水混凝土的毛细吸水试验。

1 试验设计

1.1 原材料

试验所需的原材料及来源:①拌合水:自来水;②细骨料:粗砂,细度模数MX=3.34;③天然粗骨料(natural coarse aggregate, NCA):天然碎石;④再生粗骨料(recycled coarse aggregate, RCA):将混凝土框架结构的拆除构件人工破碎剔除钢筋后,经颚式破碎机进行破碎后人工筛分后得到,粗骨料的基本性能指标见表1;⑤胶凝材料包括水泥(P.O 42.5普通硅酸盐水泥),粉煤灰(II级),硅粉(SiO2>95%);⑥钢纤维:剪切型钢纤维,波浪形,长度为30 mm,等效直径0.6 mm;⑦减水剂:萘系高效减水剂。由表1知,RCA的表观密度和堆积密度比NCA低,含水率和压碎指标高于NCA,其中10 min的吸水率约是NCA的12倍,这一结果与现有研究成果相符[5-6]。由于再生粗骨料制备工艺流程严谨,RCA的含泥量相比NCA低。粗骨料的性能指标均满足现行规范的指标要求,可以用于配置混凝土。

表1 粗骨料的基本性能Table 1 Basic properties of coarse aggregates

1.2 配合比

根据现有规范及研究,设计再生透水混凝土的水胶比为0.3,砂率10%[7-10]。以100%再生粗骨料制备的透水混凝土(再生透水混凝土)为基准,在不改变水胶比与砂率的前提下,分别设计了5种透水混凝土:①普通透水混凝土(全部采用天然骨料);②粉煤灰等量取代20%水泥;③硅粉等量取代6%水泥;④萘系高效减水剂取水泥质量的1%;⑤外掺钢纤维量为水泥质量的3%。为减小再生粗骨料高吸水性的影响,采用增加附加水量补偿的方法[11],附加水量由再生粗骨料10 min吸水量确定。

透水混凝土配合比见表2。表中,NPC表示天然骨料透水混凝土,RPC表示再生骨料透水混凝土,SP、FA、Si、SF分别表示RPC掺入萘系高效减水剂、粉煤灰、硅粉和钢纤维。

表2 透水混凝土的配合比Table 2 Mix proportions of pervious concrete

1.3 试验内容及方法

1.3.1 搅拌与成型工艺

试件的制作与养护均在室内进行。试验采用人工拌制混凝土,试件尺寸均为150 mm×150 mm×150 mm,共6组,每组9块。制作流程如图1。试件成型1 d后,放入温度(20±2)℃,湿度98%以上的养护室养护28 d。

图1 透水混凝土制作流程图Fig.1 Flow chart of production of pervious concretes

1.3.2 强度孔隙率及透水性能试验

抗压和劈裂抗拉强度参照《普通混凝土力学性能试验方法标准》(GB/T 50081-2002)[12]执行,孔隙率及透水性能试验参照《透水水泥混凝土路面技术规程》(CJJ/T 135-2009)[13]执行。

1.3.3 无损伤再生透水混凝土毛细吸水试验

毛细吸水作为水分在非饱和建筑材料中的主要传输方式,是影响结构长期性能(如耐久性能)的关键因素[14]。在前人混凝土毛细吸水试验研究[14-18]基础上,针对透水混凝土自制毛细吸水装置,如图2所示。试验步骤:1)试件尺寸为150 mm立方体,标准养护28 d取出,将试件放入鼓风干燥箱(105±5)℃中干燥至恒重,冷却至室温后,除测试的对立面以外其余2个侧面用环氧树脂密封,然后采用电子天平(精读0.01 g)称质量,室内温度设置为(20±2)℃,湿度为50%±2%;2)将试件的吸水面向下,置于自制毛细吸水装置内,然后向容器内加水至标记高度,利用支撑架控制水面淹没试件底面的高度为5 mm;3)每组3个试件,每个试件记录2个面,每个面布置5个测点。从水达到标记高度时为起始时间,然后每间隔5 min对试件吸水高度进行拍照读数,共进行6次,即30 min;4)连续吸水30 min后取出,用湿布将试件与水接触面上的多余水分擦去,然后称质量。

图2 毛细吸水试验装置图Fig.2 Capillary water absorption test device

2 试验结果与分析

2.1 掺合料及外加剂对再生透水混凝土28 d强度的影响

透水混凝土的28 d抗压强度、劈裂抗拉强度试验结果见图3。本次试验测得的透水混凝土抗压强度在4.0~9.6 MPa,文献[19-20]中推荐的透水混凝土圆柱体抗压强度范围为3.5~28.0 MPa,依据国际标准(ISO/DID 7034)得到相对应的标准立方体抗压强度为3.9~35 MPa,本次试验结果与之相符。

图3 掺合料及外加剂对透水混凝土28 d强度的影响Fig.3 Strengths at 28 days of pervious concretes containing cementing materials and admixture

由图3可知,RPC的抗压强度、劈裂抗拉强度分别为6.7和1.13 MPa,高于NPC的4.0、0.59 MPa。与普通混凝土不同,透水混凝土的强度主要取决于骨料之间极薄的水泥浆层及其与骨料的粘结性[21-23],骨料本身强度对其影响不大。因此,试验结果显示再生透水混凝土强度高于普通透水混凝土可以归结为:1)由表1可知,本次试验采用的天然骨料含泥量相比再生骨料大,一定程度上影响骨料间水泥基强度的发展;2)试验中采用附加水的方法减小了再生骨料高吸水率的影响,这部分附加水使再生透水混凝土内部能保持一定湿度,起到“内养护”的作用[11,24],有利于再生透水混凝土强度的发展;3)再生粗骨料多孔隙特性及其表面比较粗糙[25-26],增加了骨料与水泥浆间粘结强度。

与RPC相比,内掺粉煤灰可有效提高透水混凝土的抗压强度,提高约44%,达到9.63 MPa;萘系高效减水剂及硅粉对再生透水混凝土抗压强度的改善不显著,钢纤维的掺入会导致再生透水混凝土抗压强度降低。掺合料及外加剂的使用均会对劈裂抗拉强度产生不利影响,其影响程度为:减水剂、粉煤灰<硅粉<钢纤维,如内掺硅粉可降低26%,原因可能是:掺入硅粉产生火山灰反应,所生成的胶凝体虽可填充再生透水混凝土内部孔隙,改善其受力分布,但胶凝体吸水后会产生一定的体积膨胀,增大了再生透水混凝土的内部应力,导致应力集中[7,9],从而影响再生透水混凝土劈裂抗拉强度的发展。

再生透水混凝土典型破坏形态见图4。在混凝土立方体抗压试验过程中,加载初期,试件表面少量颗粒出现掉落,未发现有裂缝。随着荷载增大,试件内的应力不断增加,初始出现的裂缝靠近试块的侧表层,沿斜向往上、下端发展至加载面处转向试件角部。随着荷载的继续增加,裂缝逐渐在试件内部发展,表面混凝土开始大量剥落。再生混凝土试块的破坏断面主要为2处:一是再生骨料表面弱硬化水泥浆体,二是再生骨料与新拌水泥浆之间的界面过渡区。

图4 再生透水混凝土28 d典型破坏路径Fig.4 Typical crack path of RPC at 28 d

实测劈裂抗拉强度与抗压强度的比值(拉压比)范围为9.5%~16.9%,平均值13.5%。文献[2]和文献[21]中测得的拉压比均值分别为13.1%、14.4%,与文献[27-28]中总结的(再生)透水混凝土拉压比范围(9%~14%)基本一致。

2.2 孔隙率与透水系数

透水混凝土28 d的孔隙率、透水系数及相互关系见图5-图7。本次试验测得的透水混凝土孔隙率与透水系数范围分别在17.8%~23.8%、0.27~0.57 cm/s,与透水混凝土满足渗透性要求下推荐的孔隙率、透水系数范围一致[19-20],并且满足《透水水泥混凝土路面技术规程》(CJJ/T 135-2009)中连续孔隙率及透水系数的要求(V≥10%,k≥0.05 cm/s)。

由图5-图6可知,与RPC相比:

1)NPC的孔隙率和透水性能都有所下降,透水系数降低了约41%。分析原因认为:再生粗骨料表面比较粗糙及颗粒形状不规则,有利于增加混凝土内部孔隙,提高透水性能。

2)掺入钢纤维可有效提高再生透水混凝土的孔隙率与透水性能,孔隙率23.8%,透水系数0.57 cm/s,提高幅度分别为16%、24%,这也是导致钢纤维再生透水混凝土强度低的主要原因。

3)粉煤灰的掺入虽然能提高抗压强度,但会降低孔隙率与透水性能,降低幅度分别为12%、37%,这是由于:①水泥水化产生的Ca(OH)2吸附到粉煤灰颗粒表面,与粉煤灰中SiO2、A12O3等硅酸盐玻璃体发生二次水化反应,生成钙矾石、水化硅酸钙(C-S-H)凝胶,可显著改善混凝土的孔结构,减小孔径并降低孔隙率[7-8,10];②再生粗骨料多孔隙特性及其表面比较粗糙,粉煤灰中的微细颗粒渗入其中,随着后期水化反应,增大了水泥基与再生粗骨料界面过渡区(ITZ)的粘接强度[29];③已有研究表明,粉煤灰活性较水泥低。再生透水混凝土“内养护”作用促进了粉煤灰的火山灰效应。

4)内掺硅粉或掺入萘系高效减水剂对再生透水混凝土孔隙率及透水性的改善作用不显著。如内掺硅粉提高孔隙率6.6%,但透水性略有降低,掺入萘系高效减水剂则是透水系数提高4.3%,但孔隙率略有降低。

图5 掺合料及外加剂对透水混凝土孔隙率的影响Fig.5 Effect of pervious concretes containing cementing materials and admixture on its total void

图6 掺合料及外加剂对透水混凝土透水系数的影响Fig.6 Effect of pervious concretes containing cementing materials and admixture on its water permeability

图7 孔隙率与透水系数关系图Fig.7 Relationship between total void and water permeability of pervious concretes

由图7可知,透水系数随着孔隙率增大而增大,二者呈指数关系,这与普通透水混凝土描述的基本一致[30],也与现有再生透水混凝土的研究结论相符[2-3,21,31],但本文实测值略低,这是由于试验时为保证新拌混凝土和易性而添加10%粗砂填充了部分孔隙所致。

2.3 无损伤再生透水混凝土毛细吸水过程

再生透水混凝土无损伤状态下的毛细吸水过程为:再生透水混凝土在毛细管吸附力的作用下,吸水过程在前期曲线呈线性增长,后期曲线趋于平缓,与普通混凝土的规律[14,16-17]相似,其毛细吸水高度和吸水时间之间的关系如公式(1)所示。

式中H为再生透水混凝土的毛细吸水高度,cm;T为毛细吸水时间,min;a,b为拟合参数。

由图8可知,在吸水前30 min,再生透水混凝土的毛细吸水高度H和吸水时间T呈幂函数分布。掺入钢纤维在整个毛细吸水过程的吸水高度明显高于RPC,掺入硅粉、粉煤灰和萘系高效减水剂后的吸水高度与RPC基本相同,各处理毛细吸水高度与吸水时间的拟合方程见表3。与RPC相比,硅粉和粉煤灰的掺入显著增加累积毛细吸水质量,而掺入钢纤维对吸水质量影响甚微,减水剂的使用会明显减小吸水量(图9)。试验得到毛细吸水高度最大值19.4 mm,毛细吸水最大浸入量为0.01 g/cm3,掺20%粉煤灰再生透水混凝土的吸水高度约13.5 mm,吸水质量约28 g,这个数值在量级上与现有普通混凝土毛细吸水试验的成果[14,17]一致。

图8 毛细吸水高度与吸水时间的关系Fig.8 Relationship between capillary absorption time and absorption height of pervious concretes

表3 毛细吸水高度与吸水时间拟合参数表Table 3 Fitting parameters of capillary absorption time and absorption height

图9 再生骨料透水混凝土30 min毛细吸水质量Fig.9 Cumulative capillary absorption quality of RPC in 30 min

3 结 论

本文研究了天然骨料透水混凝土及再生骨料透水混凝土的孔隙率、透水性及强度性能,其中重点分析了粉煤灰、硅粉、萘系高效减水剂及钢纤维对再生骨料透水混凝土的改性作用,并开展了透水混凝土的毛细吸水试验。基于以上数据,得出结论如下:

1)再生骨料透水混凝土的强度、透水性符合规范要求,且本文试验结果优于同配比条件下天然骨料透水混凝土,即:RPC的抗压强度、劈裂抗拉强度分别为6.7和1.13 MPa,高于NPC的4.0、0.59 MPa,因此采用再生骨料制备透水混凝土从其性能上而言是可行的。

2)粉煤灰能够提高再生骨料透水混凝土抗压强度(提高幅度约44%,达到9.63 MPa),但同时会降低其孔隙率及透水性;钢纤维能够显著提高其孔隙率及透水系数(孔隙率与透水系数分别达到23.8%、0.57 cm/s),但抗压强度反而降低;硅粉及萘系减水剂对再生透水混凝土性能有一定的改善作用,但不显著。

3)在无损状态下,再生骨料透水混凝土毛细吸水前30 min内,其毛细吸水高度和吸水时间成幂函数关系,毛细吸水的过程与普通混凝土类似,即:在前期曲线呈线性增长,后期曲线趋于平缓。钢纤维能够有效提高毛细吸水高度,但对吸水质量影响小;硅粉、粉煤灰和萘系高效减水剂对其吸水高度影响不明显,但硅粉和粉煤灰会显著增加毛细吸水质量,而减水剂会降低吸水量。

[1] 孙家瑛,梁山. 再生混凝土集料透水性混凝土性能研究及应用[J]. 建筑材料学报,2012(6):747-750.

Sun Jiaying, Liang Shan. Performance of recycled concrete aggregate porous cement concrete and its application [J]. Journal of Building Materials, 2012(6): 747-750. (in Chinese with English abstract)

[2] Zaetang Y, Sata V, Wongsa A, et al. Properties of pervious concrete containing recycled concrete block aggregate and recycled concrete aggregate[J]. Construction & Building Materials, 2016, 111: 15-21.

[3] Güneyisi E, Gesoğlu M, Kareem Q, et al. Effect of different substitution of natural aggregate by recycled aggregate on performance characteristics of pervious concrete[J]. Materials and Structures, 2016, 49(1): 521-536.

[4] Sriravindrarajah R, Wang N D H, Lai J W E. Mix design for pervious recycled aggregate Concrete[J]. International Journal of Concrete Structures and Materials, 2012, 6(4): 239-246.

[5] de Juan M S, Gutierrez P A. Study on the influence of attached mortar content on the properties of recycled concrete aggregate[J]. Constr Build Mater, 2009, 23(2): 872-877.

[6] Etxeberria M, Vázquez E, Marí A, et al. Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete[J]. Cement & Concrete Research, 2007, 37(5):735-742.

[7] 李清富,孙振华,张海洋. 粉煤灰和硅粉对混凝土强度影响的试验研究[J]. 混凝土,2011(5):77-79.

Li Qingfu, Sun Zhenhua, Zhang Haiyang. Experiment about effect of fly ash and silica fume on the strength of concrete[J]. Concrete,2011(5): 77-79. (in Chinese with English abstract)

[8] 张学兵,匡成钢,方志,等. 钢纤维粉煤灰再生混凝土强度正交试验研究[J]. 建筑材料学报,2014(4):677-684.

Zhang Xuebing, Kuang Chenggang, Fang Zhi, et al. Orthogonal experimental study on strength of steel fiber reinforced fly ash recycled concrete[J]. Journal of Building Materials, 2014(4): 677-684. (in Chinese with English abstract)

[9] 王社良,于洋,张博,等. 粉煤灰和硅粉对再生混凝土力学性能影响的试验研究[J]. 混凝土,2011(12):53-55.

Wang Sheliang, Yu Yang, Zhang Bo, et al. Experimental study on influence of mechanic properties of recycled concrete by fly ash and silica fume[J]. Concrete, 2011(12): 53-55. (in Chinese with English abstract)

[10] Nochaiya T, Wongkeo W, Chaipanich A. Utilization of fly ash with silica fume and properties of Portland cement-fly ash-silica fume concrete[J]. Fuel, 2010, 89(3): 768-774.

[11] 肖建庄,李佳彬,孙振平,等. 再生混凝土的抗压强度研究[J].同济大学学报:自然科学版,2004,32(12):1558-1561.

Xiao Jianzhuang, Li Jiabin, Sun Zhenping, et al. Study on compressive strength of recycled concrete[J]. Journal of Tongji University: Natural Science, 2004, 32(12): 1558-1561. (in Chinese with English abstract)

[12] 普通混凝土力学性能试验方法标准:GB/T 50081-2002[S]. [13] 透水水泥混凝土路面技术规程:CJJ/T 135-2009[S].

[14] 黄蓓,钱春香. 掺合料混凝土的毛细吸水现象[J]. 混凝土与水泥制品,2008(4):14-16.

Huang Bei, Qian Chunxiang. Phenomena of capillary suction to concrete with mineral admixtures[J]. Construction and Cement Products, 2008(4):14-16. (in Chinese with English abstract)

[15] 朱方之,赵铁军,王鹏刚,等. 混凝土毛细吸水影响因素探讨[J]. 西安建筑科技大学学报:自然科学版,2012(5):627-631,636.

Zhu Fangzhi, Zhao Tiejun, Wang Penggang, et al. Discussion of the affecting factors on concrete sorption capacity [J]. Journal of Xi'an University of Architecture & Technology: Natural Science Edition, 2012(5): 627-631,636. (in Chinese with English abstract)

[16] 李淑红. 混凝土中毛细吸水过程的理论及试验研究[D].大连:大连理工大学,2011.

Li Shuhong. Theoretical and Experimental Study on the Capillary Absorption Within Concrete[D]. Dalian: Dalian University of Technology, 2011. (in Chinese with English abstract)

[17] 张鹏,赵铁军,Wittmann F H,等. 基于中子成像的水泥基材料毛细吸水动力学研究[J]. 水利学报,2011(1):81-87.

Zhang Peng, Zhao Tiejun, Wittmann F H, et al. Water capillary suction dynamics of cement-based materials based on neutron radiography method[J]. Journal of Hydraulic Engineering, 2011(1): 81-87. (in Chinese with English abstract)

[18] 李淑红,王立成. 多孔建筑材料毛细吸水过程研究进展综述[J]. 水利与建筑工程学报,2010(6):16-20.

Li Shuhong, Wang Licheng. Review on study for capillary absorption of porous building materials[J]. Journal of Water Resources and Architectural Engineering, 2010(6): 16-20. (in Chinese with English abstract)

[19] ACI committee 522, pervious concrete, Report no. 522R-10, American ConcreteInstitute, Detroit, USA; 2010. p.38.

[20] Tennis P D, Leming M L, Akers D J. Pervious Concrete Pavements[J]. Detention Basins, 2004.

[21] Sata V, Wongsa A, Chindaprasirt P. Properties of pervious geopolymer concrete using recycled aggregates[J]. Construction & Building Materials, 2013, 42(9):33-39.

[22] Yang J, Jiang G, Experimental study on properties of pervious concrete pavement materials, Cem[J]. Concrete Research, 2003, 33(3): 381-386.

[23] Yu C, Wang K J, Di L. Mechanical properties of pervious cement concrete[J]. Journal of Central South University, 2012, 19(11): 3329-3334.

[24] 肖建庄. 再生混凝土[M]. 北京:中国建筑工业出版社,2008.

[25] Moriconi G, Corinaldesi V, Antonucci R. Environmentallyfriendly mortars: A way to improve bond between mortar and brick[J]. Materials & Structures, 2003, 36(10):702-708.

[26] Xiao Z, Ling T C, Kou S C, et al. Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks[J]. Waste Management, 2011, 31(8): 1859-1866.

[27] Kevern J T, Wang K, Schaefer V R. Effect of coarse aggregate on the freeze thaw durability of pervious concrete[J]. J Mater Civ Eng, 2010(22): 469-475. http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000049.

[28] Kuo W T, Liu C C, Su D S. Use of washed municipal solid waste incinerator bottom ash in pervious concrete[J]. Cement & Concrete Composites, 2013, 37(1): 328-335.

[29] Kou S C, Poon C S, Agrela F. Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures[J]. Cement & Concrete Composites, 2011, 33(8): 788-795.

[30] Neithalath N, Sumanasooriya M S, Deo O. Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction[J]. Materials Characterization, 2010, 61(8):802-813.

[31] Tho-in T, Sata V, Chindaprasirt P, et al. Pervious highcalcium fly ash geopolymer concrete[J]. Construction & Building Materials, 2012, 30(5): 366-371.

Experiment on strength and permeability of recycled aggregate pervious concrete

Chen Shoukai1,2, Yang Qing1,2, Liu Qiuchang1, Guo Lei1,2, Wang Lunyan1,2
(1. School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450011, China; 2. Water Environment Governance and Ecological Restoration Academician Workstation of Henan Province, Zhengzhou 450002, China)

To prepare pervious concrete with recycled concrete aggregate is a hot point and the trend of the current research, while strength and water permeability are the key performance highlighted and to be broken through at present. With waste prefabricated concrete beam members as the source of recycled aggregate, pervious concrete was prepared, and 6 groups of mixture ratios were designed with water cement ratio of 0.3 and sand ratio of 10% as the benchmark. Besides, through the experiment on test cubes under standard maintenance, the porosity, water permeability and strength performance of recycled aggregate pervious concrete (RPC) under a single factor were studied. The grain size of coarse aggregate was 4.75-9.5 mm and the natural coarse aggregate (NCA) came from gravels. With the pervious concrete prepared with 100% recycled coarse aggregate as the benchmark, 5 kinds of pervious concretes were designed on the premise of not changing the water-binder ratio and sand ratio: 1) ordinary pervious concrete (wholly made of natural aggregate); 2) equivalent replacement of 20% cement with fly ash; 3) equivalent replacement of 6% cement with silica fume; 4) adding naphthalene superplasticizer equivalent to 1% of the mass of the cement; 5) external addition of steel fiber equivalent to 3% of the mass of the cement. To reduce the influence of the high water absorption of the recycled coarse aggregate, the method of increasing additional water compensation was adopted and the amount of additional water was determined as the amount of water absorbed in 10 min by the recycled coarse aggregate. On the basis of the test and research of the capillary water absorption of concrete by predecessors, a capillary water absorption device for pervious concrete was self-made. It was measured in the experiment that the range of porosity, permeability coefficient and compressive strength was 17.8%-23.8%, 0.27-0.57 cm/s and 4.0-9.63 MPa respectively. According to these results, the basic performance of pervious concrete made of recycled aggregate could satisfy the requirements. Compared with RPC, adding fly ash could realize effective improvement of the compressive strength of the pervious concrete to 9.63 MPa, an increase of about 44%, the external addition of steel fiber could improve the water permeability, and the mixing of naphthalene super plasticizer and silica fume didn’t have obvious effect. Admixtures and additives would both exert adverse effect on the splitting tensile strength, and their affecting degree was super plasticizer, fly ash < silica fume < steel fiber. The ratio of the measured splitting tensile strength to the compressive strength (ratio of tension to compression) was 9.5%-16.9%, with the average value being 13.5%. The water permeability increased with the increase of the porosity, and the two presented an exponential relationship, which was basically consistent with the description of ordinary pervious concrete. In addition, it was figured out in the experiment that the maximum capillary water absorption height was 19.4 mm, and the maximum immersion amount in capillary water absorption was 0.01 g/cm3; the water absorption height of RPC internally doped with 20% fly ash was about 13.5 mm, while the amount of water absorbed was about 28 g, both values being consistent with the test results of capillary water absorption of existing ordinary concrete in terms of the order of magnitude. In nondestructive condition, the capillary water absorption process of previous concrete made of recycled aggregate was similar with that of ordinary concrete, namely, fast absorption in the early stage and steady absorption in the late stage.

concretes; performance; compressive strength; recycled aggregate pervious concrete (RPC); cementing materials and admixture; permeability; porosity; capillary water absorption

TU528.0

A

1002-6819(2017)-15-0141-06

2017-03-30

2017-05-12

国家自然科学青年基金项目(51309101);国家自然科学基金面上项目(51679092)

陈守开,男,浙江温州人,博士,副教授。主要从事混凝土材料试验及水工混凝土结构数值仿真等方面的研究。郑州 华北水利水电大学水利学院,450011。Email:man200177@163.com

10.11975/j.issn.1002-6819.2017.15.018

猜你喜欢
硅粉透水性钢纤维
不同纤维长度的混杂钢纤维混凝土本构模型
硅粉对无机植筋高性能混凝土材料强度影响试验
超高性能磷酸镁水泥混凝土的制备和力学性能研究*
硅粉料仓粉尘爆炸危险性分析及防爆设计研究
硅粉对透水混凝土性能影响的试验研究
不同纤维长径比对钢纤维混凝土梁抗弯性能的影响分析
透水性混凝土的发展与应用
改良水下不分散混凝土在水利工程中的应用研究
CONTENTS
既有钢纤维混凝土超声回弹综合法的试验研究