A型肉毒毒素作用于神经胶质细胞缓解神经病理性疼痛机制的研究进展

2024-03-20 01:20潘昱睿王瑜元白玉龙
上海医药 2024年3期
关键词:A型肉毒毒素

潘昱睿 王瑜元 白玉龙

摘 要 神经病理性疼痛是一个重要的临床问题,常规药物治疗效果不佳。A型肉毒毒素可缓解多种疼痛,其镇痛作用被认为与神经胶质细胞相关。本文概要介绍A型肉毒毒素作用于神经胶质细胞缓解神经病理性疼痛机制的研究进展,进一步探究A型肉毒毒素在神經病理性疼痛治疗上的临床潜力。

关键词 神经病理性疼痛 A型肉毒毒素 神经胶质细胞

中图分类号:R971; R961 文献标志码:A 文章编号:1006-1533(2024)03-0009-07

引用本文 潘昱睿, 王瑜元, 白玉龙. A型肉毒毒素作用于神经胶质细胞缓解神经病理性疼痛机制的研究进展[J]. 上海医药, 2024, 45(3): 9-15.

基金项目:国家自然科学基金青年科学基金项目(82102663)

Research progress on mechanism of botulinum toxin type A acting on glial cells to relieve neuropathic pain

PAN Yurui, WANG Yuyuan, BAI Yulong

(Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China)

ABSTRACT Neuropathic pain is an important clinical problem that is poorly treated with conventional medications. Botulinum toxin type A relieves a wide range of pain, and its analgesic effects are thought to be associated with glial cells. This article summarizes the research progress of the mechanism of botulinum toxin type A acting on glial cells to relieve neuropathic pain, and further explores the clinical potential of botulinum toxin type A in the treatment of neuropathic pain.

KEY WORDS neuropathic pain; botulinum toxin type A; glial cells

神经病理性疼痛是由影响躯体感觉神经系统的各种损害或疾病引起的直接后果,表现为自发性疼痛、痛觉过敏(由伤害性刺激引起的痛觉增强)和触诱发痛(由无害刺激引起的疼痛),以及睡眠剥夺、焦虑、抑郁等共病。A型肉毒毒素是革兰阳性厌氧菌肉毒梭状芽孢杆菌产生的一种神经毒素[1],被广泛用于治疗肌张力障碍疾病,如眼睑痉挛、面肌痉挛等。近年来,A型肉毒毒素在神经病理性疼痛治疗上的应用逐渐增多并显示有良好效果,但作用机制尚未完全明确。多项研究表明,神经胶质细胞尤其是小胶质细胞在神经病理性疼痛的发展、维持中起着重要作用[2-3]。本文概要介绍A型肉毒毒素通过作用于神经胶质细胞缓解神经病理性疼痛机制的研究进展。

1 A型肉毒毒素

肉毒毒素是肉毒梭状芽孢杆菌产生的一类神经毒素,其中A型肉毒毒素已广泛用于临床。A型肉毒毒素由通过二硫键连接的轻链和重链组成,其轻链可裂解可溶性N-乙基马来酰亚胺敏感因子附着蛋白受体(soluble N-ethylmaleimide-sensitive factor attachment protein receptor, SNARE)而阻止神经递质和神经肽的释放。长期以来,A型肉毒毒素的镇痛作用一直被认为源自于其肌肉松弛作用。但一项对神经病理性疼痛模型的研究显示,A型肉毒毒素治疗的肌肉松弛持续时间和疼痛缓解持续时间并不重叠,表明A型肉毒毒素具有独立于肌肉松弛的镇痛作用[4]。A型肉毒毒素不仅抑制乙酰胆碱释放,还抑制其他神经递质和神经肽释放,如P物质、降钙素基因相关肽等[5]。A型肉毒毒素被认为是一种用于治疗神经病理性疼痛的三线止痛药[6]。A型肉毒毒素治疗神经病理性疼痛有效,但镇痛机制尚未完全明确。

2 神经胶质细胞

小胶质细胞存在于大脑和脊髓的所有区域。作为一种巨噬细胞,小胶质细胞在神经组织的免疫和炎症方面起着重要作用[7]。小胶质细胞活化表现为“小胶质细胞增生”,特征是显著的细胞形态变化(肥大)、增殖和功能变化[3]。与小胶质细胞类似,星形胶质细胞也会在各种病理条件下被激活,导致“星形胶质细胞增生”,特征是细胞形态变化、增殖和星形胶质细胞标记的胶质纤维酸性蛋白水平显著上调[8-9]。

3 神经胶质细胞在神经病理性疼痛中的作用

神经系统和免疫系统的相互作用对神经病理性疼痛的发展、维持起着重要作用[2]。研究显示,正常情况下刺激小胶质细胞可导致痛觉过敏,表明小胶质细胞参与疼痛的产生[10]。神经损伤发生后,小胶质细胞通过改变形态和激活胞内炎症通路,释放促炎细胞因子,促进神经炎症的发生、发展[11-12]。多种与疼痛相关的神经调质能作用于小胶质细胞,小胶质细胞表面广泛表达的各种神经递质受体、激素和神经调质受体在痛觉敏化中起着关键作用[13-14]。神经损伤会导致伤害性信息通过小胶质细胞胞内信号通路转导,如丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)、核转录因子κB(nuclear transcription factor κB, NF-κB)、信号转导及转录激活蛋白、磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)等信号通路[12, 15]。

星形胶质细胞已被认为是另一种参与神经病理性疼痛发生、发展的神经胶质细胞。神经病理性疼痛信号的引入会上调星形胶质细胞中胶质纤维酸性蛋白的表达和多种活性物质的分泌[16],进而促进神经病理性疼痛的发生、发展,介导中枢敏化的形成。神经损伤发生后,星形胶质细胞相对较晚地被激活,通常在小胶质细胞被激活之后,但在神经病理性疼痛持续时间内,星形胶质细胞保持活化状态[17-18]。

4 A型肉毒毒素作用于小胶质细胞缓解神经病理性疼痛的机制

A型肉毒毒素、星形胶质细胞和小胶质细胞之间相互作用的主要证据大多来自对神经病理性疼痛动物模型的研究。

4.1 A型肉毒毒素通过P2X7受体促进小胶质细胞向M2表型的极化来缓解疼痛

在中枢神经系统,P2X7受体及其mRNA在小胶质细胞中的表达水平最高,在星形胶质细胞和少突胶质细胞中的表达量则低得多[19-20]。一项研究发现,小胶质细胞通过P2X7受体上调促炎细胞因子白介素-18水平来维持癌症痛,驱动脊髓神经元过度活化和中枢敏化[21]。小鼠周围神经损伤后,P2X7受体基因的缺失可显著降低其引起的痛觉过敏[22]。这些研究结果表明,P2X7受体在神经病理性疼痛的发生、发展中起着重要作用。

小胶质细胞有M1、M2两种表型。M1型小胶质细胞可增加各种促炎细胞因子的合成和释放,如肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)、白介素-18等,激活邻近神经元,导致痛觉过敏和疼痛持续[23]。M2型小胶质细胞则能分泌抗炎细胞因子,如白介素-4、白介素-10等。Higashi等[24]发现,P2X7受体可促进小胶质细胞向M1表型的极化,并释放促炎细胞因子,而抑制这种极化,就可缓解疼痛。Wu等[25]的研究表明,在体、离体时P2X7受体表达水平的上调都会诱导脊髓小胶质细胞向M1表型的极化,且伴随TNF-α、白介素-18的分泌。用BBG(一种P2X7受体的特异性拮抗剂)处理癌症骨痛大鼠模型可显著上调M2表型标志物(CD163、精氨酸酶-1)和抗炎细胞因子(白介素-4、白介素-10)的表达水平,同时下调M1表型标志物(诱异型一氧化氮合酶、CD86)和促炎细胞因子(TNF-α、白介素-18)的表达水平。这些数据表明,P2X7受体参与调节小胶质细胞的M1/M2表型极化。Gui等[26]的研究发现,在慢性压迫损伤所致神经病理性疼痛大鼠模型中,A型肉毒毒素能通过下调P2X7受体表达水平而诱导小胶质细胞向M2表型的极化,提高大鼠的疼痛阈值。目前,尽管P2X7受体是如何诱导小胶质细胞向M2表型极化的尚不完全清楚,但可确定的是,A型肉毒毒素能够通过P2X7受体促进小胶质细胞向M2表型的极化,故对于神经病理性疼痛,设法使小胶质细胞从促炎表型轉化为抗炎表型或许是一种新的有效治疗策略。

4.2 A型肉毒毒素通过影响P2X4受体、p38 MAPK信号通路来缓解疼痛

P2X4受体是小胶质细胞上的另一种三磷酸腺苷受体。2003年,Tsuda等[27]首次在神经病理性疼痛研究中观察到P2X4受体表达水平的变化:神经损伤后,脊髓中小胶质细胞P2X4受体的表达水平上调,而神经元和星形胶质细胞的P2X4受体表达水平却无变化。阻断P2X4受体能抑制神经损伤引起的触诱发痛[27]。此后,越来越多的研究表明,小胶质细胞P2X4受体是神经病理性疼痛发生、发展的重要参与者。

p38 MAPK是神经胶质细胞中的重要信号通路,与疼痛介质的产生密切相关[28]。有研究观察到选择性神经损伤(spared nerve indury)大鼠脊髓小胶质细胞P2X4受体、p38 MAPK、脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)的表达水平上调[29],而小胶质细胞P2X4受体能通过激活并诱导p38 MAPK信号通路释放BDNF、p38或MAPK的抑制因子来减弱这一现象[30-31]。一项研究表明,A型肉毒毒素可通过抑制小胶质细胞P2X4受体- p38 MAPK信号通路而影响小胶质细胞的活化[32]。P2X4受体、p38 MAPK信号通路在A型肉毒毒素缓解神经病理性疼痛中起着重要作用。

4.3 A型肉毒毒素通过靶向Toll样受体(Toll-like receptor, TLR)2-髓样分化因子88(myeloid differentiation factor 88, MyD88)信号通路裂解突触体相关蛋白(synaptosomal-associated protein, SNAP)-23来缓解疼痛

SNARE是A型肉毒毒素的作用靶点。既往体外、体内研究表明,SNAP-23而不是SNAP-25在A型肉毒毒素对小胶质细胞的影响中起着重要作用[33-34]。在小胶质细胞表面表达的众多受体中,TLR家族特别是TLR2和TLR4代表了小胶质细胞活化和神经损伤之间的可能联系[35-36]。MyD88是介导TLR效应的最重要胞内途径。小胶质细胞被激活后,其表面TLR能通过TLR- MyD88信号通路激活并促进NF-κB合成细胞因子,如TNF-α、白介素-1β等[37]。

Piotrowska等[33]发现,A型肉毒毒素能通过抑制胞内信号通路(NF-κB、p38、胞外调节蛋白激酶1/2信号通路)的活化来阻止内毒素诱导的促炎细胞因子的释放。这与先前对巨噬细胞的研究结果一致:A型肉毒毒素可减少MAPK的磷酸化[38];NF-κB、p38、胞外调节蛋白激酶1/2信号通路与神经炎症的发生、发展密切相关。相关研究显示,A型肉毒毒素能下调神经病理性疼痛大鼠小胶质细胞TLR2、MyD88的表达水平,但对TLR4表达水平没有影响[33, 39]。最近,研究者们注意到了TLR与SNARE之间的相互作用问题。Nair-Gupta等[40]的研究发现,依赖MyD88的TLR信号通路参与树突状细胞吞噬小体上SNAP-23的磷酸化。磷酸化的SNAP-23可稳定SNARE复合体,导致吞噬小体与内质体再循环区室融合,最终形成交叉呈递。在小胶质细胞中可观察到类似现象[1]。因此,可以推断,抑制小胶质细胞中的TLRMyD88- NF-κB信号通路就能减少SNAP-23。既往在对小胶质细胞体外模型和慢性压迫损伤所致疼痛大鼠模型的研究中都观察到,A型肉毒毒素可下调小胶质细胞SNAP-23表达水平,且在对慢性压迫损伤所致疼痛大鼠模型的研究中进一步发现,A型肉毒毒素通过两种表观遗传修饰下调SNAP-23表达水平:一方面,A型肉毒毒素通过抑制κB抑制因子激酶磷酸化来抑制SNAP-23的表达和磷酸化;另一方面,A型肉毒毒素通过泛素介导的SNAP-23降解来减少SNAP-23的表达[33, 39]。总之,A型肉毒毒素似能通过抑制TLR2- MyD88信号通路而下调SNAP-23表达水平并减少其磷酸化,进而阻止促炎细胞因子的产生。

4.4 A型肉毒毒素上调沉默信息调节因子1(silent information regulator 1, SIRT1)表达水平使NF-κB、p53、PI3K-蛋白激酶B信号通路失活来缓解疼痛

SIRT1已被证实是防治神经病理性疼痛的潜在靶点[41-42]。SIRT1存在于细胞核和细胞质中,主要作用是使细胞核内的p53、NF-κB等转录因子去乙酰化[43-44]。在各种神经病理性疼痛动物模型的脊髓中均观察到,SIRT1的表达水平较低[45-46]。研究发现,持续性痛觉过敏和慢性压迫损伤所致疼痛与脊髓中SIRT1表达水平降低有关,而鞘内注射SIRT1激动剂SRT1720则可上调SIRT1表达水平,进而通过抑制NF-κB乙酰化和阻断TNF-α、白介素-6等促炎细胞因子的释放来缓解神经病理性疼痛[47]。这些研究结果表明,脊髓中的SIRT1在神经病理性疼痛发生、发展中起着重要作用。

近期,一项对脊髓损伤大鼠模型的研究发现,A型肉毒毒素在体内、体外均能显著上调SIRT1表达水平,从而使NF-κB、p53、PI3K-蛋白激酶B等炎症和损伤相关信号通路失活,减轻炎症和氧化应激[46]。若再联合米诺环素处理,效果更明显[46]。p53是细胞凋亡途径中的关键分子之一,其表达上调可直接诱导细胞凋亡[48]。一项对体内、体外脊髓损伤模型的研究发现,SIRT1可能通过p53信号通路抑制神经元凋亡[49]。一项小胶质细胞培养研究发现,伤害性趋化因子-1会深度激活小胶质细胞的PI3K-蛋白激酶B信号通路[50]。进一步的体内研究显示,鞘内注射PI3K抑制剂LY29400不仅能显著降低骨癌痛动物模型脊髓中的小胶质细胞水平,而且可降低骨癌痛引起的机械性痛觉过敏[50]。这些研究结果表明,A型肉毒毒素可能通过上调SIRT1表达水平使NF-κB、p53、PI3K-蛋白激酶B信号通路失活,最终减轻神经炎症。

5 A型肉毒毒素作用于星形胶质细胞缓解神经病理性疼痛的机制

许多研究表明,抑制星形胶质细胞活化可减轻各种疼痛动物模型的疼痛[51-53],但A型肉毒毒素对星形胶质细胞的作用尚不明确。Marinelli等[34]的研究发现,A型肉毒毒素系通过裂解脊髓星形胶质细胞中的SNAP-25而产生神经病理性疼痛缓解作用的。其他研究也显示,在经A型肉毒毒素处理后的脂多糖激活的培养星形胶质细胞[54]和脊髓背角星形胶质细胞(慢性压迫损伤所致疼痛模型[34, 55]和脊髓损伤模型[56])中检测到裂解的SNAP-25。不过,多项体外研究证实,A型肉毒毒素不影响脂多糖刺激的培养星形胶质细胞的促炎细胞因子(白介素-1β、白介素-6、白介素-18、一氧化氮合酶2)和抗炎细胞因子(白介素-1受体拮抗剂、白介素-10、白介素-18结合蛋白)的释放。此外,A型肉毒毒素不影响脂多糖处理的培养原代星形胶质细胞中MAPK、p38、胞外调节蛋白激酶1/2和NF-κB信号通路的活化,对TLR2、TLR4的表达水平亦无影响[33]。Holm等[57]的研究发现,星形胶质细胞对TLR2和TLR3激动剂的反应较强,对TLR4激动剂的反应完全依赖于功能性小胶质细胞的存在。A型肉毒毒素对星形胶质细胞的直接影响似乎较为轻微。

6 A型肉毒毒素作用于少突胶质细胞缓解神经病理性疼痛的机制

有关少突胶质细胞在慢性疼痛发病机制中所起作用的研究较少。在部分视神经脊髓炎(一种脱髓鞘疾病)患者中可检测到针对髓鞘少突胶质细胞糖蛋白的自身抗体[58]。相当部分的多发性硬化症(另一种脱髓鞘疾病)患者会出现慢性疼痛[59],其特征是自身免疫介导的少突胶质细胞丢失,这表明人类少突胶质细胞的破坏与疼痛之间可能存在一定的关联。使用白喉毒素对成年小鼠少突胶质细胞进行实验性消融,小鼠会发生持续几周的神经病理性疼痛,且疼痛的发生不依赖适应性免疫细胞或反应性小胶质细胞和星形胶质细胞[60],表明少突胶质细胞可能独立于免疫因素或反应性小胶质细胞和星形胶质细胞而在疼痛中起着作用。Zarpelon等[61]的研究发现,少突胶质细胞是慢性压迫损伤所致疼痛模型诱导产生白介素-33的主要细胞,而缺乏白介素-33受体ST2的小鼠表现出疼痛减轻。此外,鞘内注射白介素-33会引起幼年小鼠的超敏反应,并增强其神经损伤后的机械性痛觉过敏,由白介素-33介导的痛觉过敏依赖于促炎细胞因子TNF-α和白介素-1β。因此,少突胶质细胞在痛觉中的作用可能与初级传入神经元、小胶质细胞和星形胶质细胞的作用交织在一起。少突胶质细胞对创伤性脊髓损伤高度敏感,并易因脊髓损伤而发生凋亡[62]。总体来说,目前有关A型肉毒毒素对少突胶质细胞作用的研究较少,二者间的相互作用尚不明确。

7 小结

神经病理性疼痛的發病机制复杂,且临床上缺乏有效的治疗方法。既往研究表明,A型肉毒毒素通过影响小胶质细胞极化、抑制小胶质细胞胞内炎症通路、裂解SNAP-23,以及上调SIRT1表达水平使NF-κB、p53、PI3K-蛋白激酶B信号通路失活等机制来缓解神经病理性疼痛。星形胶质细胞通过受体、连接蛋白与神经元及其他神经胶质细胞密切联系,在神经病理性疼痛发生、发展中也起着重要作用。少突胶质细胞在疼痛中的作用及其与A型肉毒毒素的相互作用尚不明确,其在痛觉调制中的作用可能与初级传入神经元、小胶质细胞和星形胶质细胞的作用交织在一起。A型肉毒毒素对神经胶质细胞的作用很复杂,加之实验模型的多样性和胶质细胞胞内炎症通路的复杂性,目前仍不能对A型肉毒毒素的作用机制作出统一的解释。但可推断的是,鉴于研究发现存在多种作用机制,A型肉毒毒素在神经病理性疼痛治疗方面具有相当的潜力。

利益冲突声明:所有作者均声明不存在利益冲突。

参考文献

[1] Rojewska E, Piotrowska A, Popiolek-Barczyk K, et al. Botulinum toxin type A—a modulator of spinal neuron-glia interactions under neuropathic pain conditions [J]. Toxins(Basel), 2018, 10(4): 145.

[2] De Logu F, De Prá SD, De David Antoniazzi CT, et al. Macrophages and Schwann cell TRPA1 mediate chronic allodynia in a mouse model of complex regional pain syndrome typeⅠ[J]. Brain Behav Immun, 2020, 88: 535-546.

[3] Chen G, Zhang YQ, Qadri YJ, et al. Microglia in pain: detrimental and protective roles in pathogenesis and resolution of pain [J]. Neuron, 2018, 100(6): 1292-1311.

[4] Park HJ, Lee Y, Lee J, et al. The effects of botulinum toxin A on mechanical and cold allodynia in a rat model of neuropathic pain [J]. Can J Anaesth, 2006, 53(5): 470-477.

[5] Becker WJ. Botulinum toxin in the treatment of headache [J]. Toxins (Basel), 2020, 12(12): 803.

[6] Attal N. Pharmacological treatments of neuropathic pain: the latest recommendations [J]. Rev Neurol (Paris), 2019, 175(1/2): 46-50.

[7] Paolicelli RC, Ferretti MT. Function and dysfunction of microglia during brain development: consequences for synapses and neural circuits [J]. Front Synaptic Neurosci, 2017, 9: 9.

[8] Garrison CJ, Dougherty PM, Kajander KC, et al. Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury [J]. Brain Res, 1991, 565(1): 1-7.

[9] Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000) [J]. Neurochem Res, 2000, 25(9/10): 1439-1451.

[10] Guan Z, Kuhn JA, Wang X, et al. Injured sensory neuronderived CSF1 induces microglial proliferation and DAP12-dependent pain [J]. Nat Neurosci, 2016, 19(1): 94-101.

[11] Luvisetto S. Botulinum neurotoxins beyond neurons: interplay with glial cells [J]. Toxins (Basel), 2022, 14(10): 704.

[12] Wang XY, Ma HJ, Xue M, et al. Anti-nociceptive effects of Sedum lineare Thunb. on spared nerve injury-induced neuropathic pain by inhibiting TLR4/NF-κB signaling in the spinal cord in rats [J]. Biomed Pharmacother, 2021, 135: 111215.

[13] Burnstock G, Kennedy C. P2X receptors in health and disease[J]. Adv Pharmacol, 2011, 61: 333-372.

[14] Acioglu C, Heary RF, Elkabes S. Roles of neuronal Tolllike receptors in neuropathic pain and central nervous system injuries and diseases [J]. Brain Behav Immun, 2022, 102: 163-178.

[15] Ji A, Xu J. Neuropathic pain: biomolecular intervention and imaging via targeting microglia activation [J]. Biomolecules, 2021, 11(9): 1343.

[16] Garrison CJ, Dougherty PM, Carlton SM. GFAP expression in lumbar spinal cord of naive and neuropathic rats treated with MK-801 [J]. Exp Neurol, 1994, 129(2): 237-243.

[17] Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? [J]. Pain, 2013, 154(Suppl 1): S10-S28.

[18] Zhang J, De Koninck Y. Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury [J]. J Neurochem, 2006, 97(3): 772-783.

[19] Illes P, Verkhratsky A, Burnstock G, et al. P2X receptors and their roles in astroglia in the central and peripheral nervous system [J]. Neuroscientist, 2012, 18(5): 422-438.

[20] Zhao YF, Tang Y, Illes P. Astrocytic and oligodendrocytic P2X7 receptors determine neuronal functions in the CNS [J]. Front Mol Neurosci, 2021, 14: 641570.

[21] Yang Y, Li H, Li TT, et al. Delayed activation of spinal microglia contributes to the maintenance of bone cancer pain in female Wistar rats via P2X7 receptor and IL-18 [J]. J Neurosci, 2015, 35(20): 7950-7963.

[22] Chessell IP, Hatcher JP, Bountra C, et al. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain [J]. Pain, 2005, 114(3): 386-396.

[23] Qin Y, Sun X, Shao X, et al. Lipopolysaccharide preconditioning induces an anti-inflammatory phenotype in BV2 microglia [J]. Cell Mol Neurobiol, 2016, 36(8): 1269-1277.

[24] Higashi Y, Aratake T, Shimizu S, et al. Influence of extracellular zinc on M1 microglial activation [J]. Sci Rep, 2017, 7: 43778.

[25] Wu P, Zhou G, Wu X, et al. P2X7 receptor induces microglia polarization to the M1 phenotype in cancer-induced bone pain rat models [J]. Mol Pain, 2022, 18: 17448069211060962.

[26] Gui X, Wang H, Wu L, et al. Botulinum toxin type A promotes microglial M2 polarization and suppresses chronic constriction injury-induced neuropathic pain through the P2X7 receptor [J]. Cell Biosci, 2020, 10: 45.

[27] Tsuda M, Shigemoto-Mogami Y, Koizumi S, et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury [J]. Nature, 2003, 424(6950): 778-783.

[28] Nasseri B, Zaringhalam J, Daniali S, et al. Thymulin treatment attenuates inflammatory pain by modulating spinal cellular and molecular signaling pathways [J]. Int Immunopharmacol, 2019, 70: 225-234.

[29] Zhou TT, Wu JR, Chen ZY, et al. Effects of dexmedetomidine on P2X4Rs, p38-MAPK and BDNF in spinal microglia in rats with spared nerve injury [J]. Brain Res, 2014, 1568: 21-30.

[30] Long T, He W, Pan Q, et al. Microglia P2X4R-BDNF signalling contributes to central sensitization in a recurrent nitroglycerin-induced chronic migraine model [J]. J Headache Pain, 2020, 21(1): 4.

[31] Meng XW, Gao JL, Zuo JL, et al. Toll-like receptor-4/p38 MAPK signaling in the dorsal horn contributes to P2X4 receptor activation and BDNF over-secretion in cancer induced bone pain [J]. Neurosci Res, 2017, 125: 37-45.

[32] Shi X, Gao C, Wang L, et al. Botulinum toxin type A ameliorates adjuvant-arthritis pain by inhibiting microglial activation-mediated neuroinflammation and intracellular molecular signaling [J]. Toxicon, 2020, 178: 33-40.

[33] Piotrowska A, Popiolek-Barczyk K, Pavone F, et al. Comparison of the expression changes after botulinum toxin type A and minocycline administration in lipopolysaccharidestimulated rat microglial and astroglial cultures [J]. Front Cell Infect Microbiol, 2017, 7: 141.

[34] Marinelli S, Vacca V, Ricordy R, et al. The analgesic effect on neuropathic pain of retrogradely transported botulinum neurotoxin A involves Schwann cells and astrocytes [J]. PLoS One, 2012, 7(10): e47977.

[35] Jurga AM, Rojewska E, Piotrowska A, et al. Blockade of Tolllike receptors (TLR2, TLR4) attenuates pain and potentiates buprenorphine analgesia in a rat neuropathic pain model [J]. Neural Plast, 2016, 2016: 5238730.

[36] Tanga FY, Nutile-McMenemy N, DeLeo JA. The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy [J]. Proc Natl Acad Sci U S A, 2005, 102(16): 5856-5861.

[37] Yang H, Tian W, Wang S, et al. TSG-6 secreted by bone marrow mesenchymal stem cells attenuates intervertebral disc degeneration by inhibiting the TLR2/NF-κB signaling pathway [J]. Lab Invest, 2018, 98(6): 755-772.

[38] Kim YJ, Kim JH, Lee KJ, et al. Botulinum neurotoxin type A induces TLR2-mediated inflammatory responses in macrophages [J]. PLoS One, 2015, 10(4): e0120840.

[39] Wang X, Tian S, Wang H, et al. Botulinum toxin type A alleviates neuropathic pain and suppresses inflammatory cytokines release from microglia by targeting TLR2/MyD88 and SNAP23 [J]. Cell Biosci, 2020, 10(1): 141.

[40] Nair-Gupta P, Baccarini A, Tung N, et al. TLR signals induce phagosomal MHC-Ⅰdelivery from the endosomal recycling compartment to allow cross-presentation [J]. Cell, 2014, 158(3): 506-521.

[41] Fan Y, Dong R, Zhang H, et al. The role of SIRT1 in neuropathic pain from the viewpoint of neuroimmunity [J]. Curr Pharm Des, 2022, 28(4): 280-286.

[42] Song FH, Liu DQ, Zhou YQ, et al. SIRT1: a promising therapeutic target for chronic pain [J]. CNS Neurosci Ther, 2022, 28(6): 818-828.

[43] Song Y, Wu Z, Zhao P. The protective effects of activating Sirt1/NF-κB pathway for neurological disorders [J]. Rev Neurosci, 2021, 33(4): 427-438.

[44] Jiao F, Gong Z. The beneficial roles of SIRT1 in neuroinflammation-related diseases [J]. Oxid Med Cell Longev, 2020, 2020: 6782872.

[45] Mo Y, Liu B, Qiu S, et al. Down-regulation of microRNA-34c-5p alleviates neuropathic pain via the SIRT1/STAT3 signaling pathway in rat models of chronic constriction injury of sciatic nerve [J]. J Neurochem, 2020, 154(3): 301-315.

[46] Yu Z, Liu J, Sun L, et al. Combination of botulinum toxin and minocycline ameliorates neuropathic pain through antioxidant stress and anti-inflammation via promoting SIRT1 pathway[J]. Front Pharmacol, 2021, 11: 602417.

[47] Luo FQ, Ma Q, Zheng H, et al. Involvement of spinal SIRT1 in development of chronic constriction injury induced neuropathic pain in rats [J]. Int J Clin Exp Pathol, 2018, 11(5): 2561-2569.

[48] Kim Y, Jo SH, Kim WH, et al. Antioxidant and antiinflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury[J]. Stem Cell Res Ther, 2015, 6: 229.

[49] Yu X, Zhang S, Zhao D, et al. SIRT1 inhibits apoptosis in in vivo and in vitro models of spinal cord injury via microRNA-494 [J]. Int J Mol Med, 2019, 43(4): 1758-1768.

[50] Jin D, Yang JP, Hu JH, et al. MCP-1 stimulates spinal microglia via PI3K/Akt pathway in bone cancer pain [J]. Brain Res, 2015, 1599: 158-167.

[51] Zhuang ZY, Wen YR, Zhang DR, et al. A peptide c-Jun N-terminal kinase (JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation: respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance [J]. J Neurosci, 2006, 26(13): 3551-3560.

[52] Chiang CY, Wang J, Xie YF, et al. Astroglial glutamateglutamine shuttle is involved in central sensitization of nociceptive neurons in rat medullary dorsal horn [J]. J Neurosci, 2007, 27(34): 9068-9076.

[53] Okada-Ogawa A, Suzuki I, Sessle BJ, et al. Astroglia in medullary dorsal horn (trigeminal spinal subnucleus caudalis) are involved in trigeminal neuropathic pain mechanisms [J]. J Neurosci, 2009, 29(36): 11161-11171.

[54] Chen WJ, Niu JQ, Chen YT, et al. Unilateral facial injection of botulinum neurotoxin A attenuates bilateral trigeminal neuropathic pain and anxiety-like behaviors through inhibition of TLR2-mediated neuroinflammation in mice [J]. J Headache Pain, 2021, 22(1): 38.

[55] Vacca V, Marinelli S, Luvisetto S, et al. Botulinum toxin A increases analgesic effects of morphine, counters development of morphine tolerance and modulates glia activation and μopioid receptor expression in neuropathic mice [J]. Brain Behav Immun, 2013, 32: 40-50.

[56] Vacca V, Madaro L, De Angelis F, et al. Revealing the therapeutic potential of botulinum neurotoxin type A in counteracting paralysis and neuropathic pain in spinally injured mice [J]. Toxins (Basel), 2020, 12(8): 491.

[57] Holm TH, Draeby D, Owens T. Microglia are required for astroglial Toll-like receptor 4 response and for optimal TLR2 and TLR3 response [J]. Glia, 2012, 60(4): 630-638.

[58] Asseyer S, Schmidt F, Chien C, et al. Pain in AQP4-IgGpositive and MOG-IgG-positive neuromyelitis optica spectrum disorders [J]. Mult Scler J Exp Transl Clin, 2018, 4(3): 2055217318796684.

[59] Urits I, Adamian L, Fiocchi J, et al. Advances in the understanding and management of chronic pain in multiple sclerosis: a comprehensive review [J]. Curr Pain Headache Rep, 2019, 23(8): 59.

[60] Gritsch S, Lu J, Thilemann S, et al. Oligodendrocyte ablation triggers central pain independently of innate or adaptive immune responses in mice [J]. Nat Commun, 2014, 5: 5472.

[61] Zarpelon AC, Rodrigues FC, Lopes AH, et al. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain [J]. FASEB J, 2016, 30(1): 54-65.

[62] Li N, Leung GK. Oligodendrocyte precursor cells in spinal cord injury: a review and update [J]. Biomed Res Int, 2015, 2015: 235195.

猜你喜欢
A型肉毒毒素
A型肉毒毒素在瘢痕疙瘩综合治疗中的应用
罕见A型肉毒毒素注射咬肌引起的颞部凹陷原因分析
醋酸曲安奈德配合A型肉毒毒素治疗增生性瘢痕疗效观察
A型肉毒毒素对人瘢痕疙瘩成纤维细胞凋亡影响的实验研究
A型肉毒毒素在美容整形外科的临床应用分析
眼轮匝肌部分切除联合A型肉毒毒素治疗眼轮匝肌肥厚型睑袋的临床研究
光疗法联合注射行面部年轻化治疗临床观察
不同剂量A型肉毒毒素注射在额纹除皱中的应用效果及对额部皮肤油脂分泌的影响
A型肉毒毒素治疗腋臭单组率的Meta分析
超声引导肉毒毒素注射联合蜡疗对脑性瘫痪下肢痉挛的疗效观察