超细纳米Co催化NH3BH3水解放氢性能研究

2017-03-17 06:17孟伟王艳李国德王丹周功沈研
辽宁化工 2017年11期
关键词:水油贵金属制氢

孟伟,王艳,2,李国德,王丹,周功,沈研



超细纳米Co催化NH3BH3水解放氢性能研究

孟伟1,王艳1,2,李国德3,王丹1,周功1,沈研1

(1. 沈阳师范大学 化学化工学院,能源与环境催化工程技术研究中心,辽宁 沈阳 110034; 2. 南开大学 先进能源材料化学教育部重点实验室,天津 300071;3. 沈阳师范大学 实验中心,辽宁 沈阳 110034)

通过反向微乳液法制备了超细纳米Co催化剂材料,通过改变制备过程中的水油比,实现了对催化剂的微观结构及催化性能的控制和优化。研究结果表明:当水油比为1∶5时,为制备该催化剂的最佳条件。该条件下制备的超细纳米Co催化剂在25 ℃时催化NH3BH3水解放氢速率为1 055.2 mL·(min·g)-1。利用透射电镜技术对在此条件下制备的催化剂材料进行表征,通过观察发现该催化剂的晶粒大小约为4~6 nm。进一步的活化能测试表明,该催化剂催化NH3BH3水解反应的活化能为47.0 kJ·mol-1,该值明显低于部分贵金属催化剂材料的活化能值,这说明制备的超细纳米Co材料具有较好的催化活性。

超细纳米Co;反相微乳液;氨硼烷;水解

目前,氨硼烷(NH3BH3)由于高储氢容量(19.6%,质量分数),在常温常压下具有良好的化学稳定性,因此被科学家认为是最有潜力的化学储氢材料之一[1,2]。氨硼烷脱氢的方式有很多,其中水解制氢被认为是最安全、最方便的脱氢方式之一[3-5]。

催化氨硼烷水解制氢的催化剂大致可以分为以下三大类:贵金属基催化剂[6, 7]、贵金属与非贵金属复合催化剂[6, 8]和非贵金属基催化剂[9-11]。其中,贵金属催化剂及贵金属与非贵金属复合催化剂的价格昂贵,不符合工业生产中对成本控制的要求,阻碍了这些贵金属催化剂的大范围使用。目前,非贵金属Co、Ni、Cu等催化剂在一定条件下也能表现出良好的催化氨硼烷水解制氢的催化活性,但非贵金属催化剂的催化性能相较于贵金属催化剂体系还有待提高,这一直是广大科研工作者研究的重点。

鉴于此,本文以超细纳米Co催化剂材料为研究对象,为了得到最佳催化性能的超细纳米Co催化剂,我们主要考察了利用反向微乳液法制备的超细纳米Co催化剂在制备过程中的影响因素(如水油比、水表面活性剂比及还原剂的浓度),同时系统研究了这些因素对催化剂催化氨硼烷制氢性能的影响。

1 实验部分

1.1 催化剂制备

量取一定量的环己烷、曲拉通X-100和异丙醇于三口瓶中,用机械搅拌并超声溶解得澄清溶液S1。将配好的CoCl2·6H2O溶液慢慢滴加到S1中,整个反应过程中始终保持超声和搅拌,并通入氮气以排除溶液中存在的氧气,滴加完毕后继续反应30 min得到粉色透明微乳液S2。

量取一定量的环己烷、曲拉通X-100和异丙醇加入另外一个三口瓶中,用机械搅拌并超声溶解得澄清溶液S3,并对其冷却。将配好的NaBH4溶液慢慢滴加到S3中,同时,手微微晃动使NaBH4溶液充分溶解其中得到透明溶液S4。然后,将S2移入冰水浴中,将S4慢慢加入S2中,在整个反应过程中要保持氮气氛围和搅拌,反应30分钟即可。将反应结束后得到的溶液离心,离心后得到的产物再用丙酮∶乙醇=1∶1的混合溶液将其清洗之后再离心,重复数次。将离心后的产物在60oC真空干燥12 h后即得到固体超细纳米Co产物。

1.2 催化剂表征

采用Hitachi HT–7700透射电子显微镜(TEM)分析制备的催化剂材料的表面形貌以及晶粒尺寸。

1.3 放氢性能测试

超细纳米Co催化NH3BH3水解制氢性能测试采用的是最典型的排水法[12]。首先配制质量分数为0.5% NH3BH3水溶液 8 mL于圆底烧瓶中,通过恒温水浴调节至一定温度(25、30、35和40oC),待温度稳定后加入催化剂材料进行放氢性能测试,并记录对应气体的体积。放氢速率的单位为mL·(min·g)-1,表示在单位质量(g)催化剂的作用下,每分钟(min)放出氢气的体积(mL)。

2 结果与讨论

2.1 水油比对超细纳米Co催化活性的影响

图1为不同水油比条件下制得的超细纳米Co催化NH3BH3水解放氢的量与时间的关系图。可以看出,在硼氢化钠的浓度和水表面活性剂比一定的条件下,NH3BH3的水解放氢量与时间呈线性关系,且随着水油比的升高,所制备的超细纳米Co催化NH3BH3水解放氢的速率逐渐加快,当水油比达到1∶5时,其催化NH3BH3水解的放氢速率达到顶峰,为1 055.2 mL·(min·g)-1,继续增加水油比,制得的超细纳米Co的催化速率反而下降。所以,可以推断当水油比为1∶5时制备的超细纳米Co催化NH3BH3水解放氢的效果最好。

图1 不同水油比下制备的超细纳米Co催化剂对NH3BH3水解放氢性能的影响曲线

2.2 超细纳米Co催化剂的表面形貌

图2a给出了最佳条件(水油比1:5) 下制备的超细纳米Co催化剂的高分辨透射电镜(HRTEM)图,可以看出:制备的Co催化剂呈规则的颗粒状结构。为了更准确的分析制备的催化剂材料的微观尺寸,图2b给出了对上述TEM图进行粒径分布分析得到的结果。由此可以推断,制备的纳米Co催化材料其晶粒大小约为4~6 nm,达到了超细纳米材料的尺度范围。所以,本实验制备的纳米Co材料这种独特的小尺寸效应势必会增加其比表面积,这更有益于增强其催化活性。

图2 制备的Co催化剂材料的HRTEM图以及对应的粒径分布柱状图

2.3 活化能测试

图3(a)是最佳条件下制备的超细纳米Co在不同温度下催化NH3BH3水解放氢速率曲线图,可见,当温度由25 ℃逐渐升高到40 ℃的过程中,放氢速率由1 055.2 mL·(min·g)-1增加到2 631.4 mL·(min·g)-1,反应速率常数由0.043 02增加到0.10213 mol·(min·g)-1。图3(b)给出了对应的拟合后的Arrhenius图。根据Arrhenius公式计算超细纳米Co催化NH3BH3水解放氢反应的活化能是44.0 kJ·mol-1。该值低于一些非贵金属催化剂,比如Co–Cu–B(50.0 kJ·mol-1)[13]、Co–B/TiO2(51.6 kJ·mol-1)[14]、Ni–Co–P/γ–Al2O3(52.1 kJ·mol-1)[15]、Co–Ni–P/ Pd–TiO2(57.0 kJ·mol-1)[16]、以及Co–B/C(57.8 kJ·mol-1)[12]、 Co/γ–Al2O3(62 kJ·mol-1)[17]等;甚至明显低于一些贵金属基催化剂,比如Ni–Ru/50WX8(52.7 kJ·mol-1)[18]、Ru–IRA-400(56.0 kJ·mol-1)[19]、Ni0.97Pt0.03(57.0 kJ·mol-1)[8]等。这说明本实验制备的超细纳米Co材料具有较好的催化活性。

(a) 不同放氢温度下的放氢动力学曲线

(b) 拟合后的Arrhenius图

图3 最佳条件下制备的超细纳米钴不同温度下水解放氢速率曲线及拟合后的Arrhenius图

3 结论

本文通过微乳液的方法成功制备了超细纳米Co催化剂,并考察了不同水油比制备条件对催化剂催化NH3BH3水解放氢性能的影响。采用透射电镜技术对制备的催化剂进行晶粒尺寸大小的表征。结果发现:当水油比为1∶5时,为制备的超细纳米Co的最优条件。此时制备的催化剂其晶粒大小约为4~6 nm。将所制备的超细纳米Co应用于NH3BH3的水解放氢研究,测试结果表明:其放氢速率为1 055.2 mL·(min·g)-1,活化能为44.0 kJ·mol-1。该值明显低于部分非贵金属基催化剂的活化能值,甚至贵金属Pt、Ru基催化剂的活化能。

[1] Sutton A. D., Burrell A. K., Dixon D. A., et al. Regeneration of Ammonia Borane Spent Fuel by Direct Reaction with Hydrazine and Liquid Ammonia [J]. Science, 2011, 331 (6023): 1426-1429.

[2] Ramachandran P. Veeraraghavan, Gagare Pravin D. Preparation of Ammonia Borane in High Yield and Purity, Methanolysis, and Regeneration [J]. Inorganic Chemistry, 2007, 46 (19): 7810-7817.

[3] Gutowska Anna, Li Liyu, Shin Yongsoon, et al. Nanoscaffold Mediates Hydrogen Release and the Reactivity of Ammonia Borane [J]. Angewandte Chemie International Edition, 2005, 44 (23): 3578-3582.

[4] He Teng, Xiong Zhitao, Wu Guotao, et al. Nanosized Co- and Ni-Catalyzed Ammonia Borane for Hydrogen Storage [J]. Chemistry of Materials, 2009, 21 (11): 2315-2318.

[5] Li Li, Yao Xiangdong, Sun Chenghua, et al. Lithium-Catalyzed Dehydrogenation of Ammonia Borane within Mesoporous Carbon Framework for Chemical Hydrogen Storage [J]. Advanced Functional Materials, 2009, 19 (2): 265-271.

[6] Yang Xiaojing, Cheng Fangyi, Liang Jing, et al. Carbon-supported Ni1−x@Ptx (x = 0.32, 0.43, 0.60, 0.67, and 0.80) core–shell nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane [J]. International Journal of Hydrogen Energy, 2011, 36 (3): 1984-1990.

[7] Zahmakiran Mehmet, Özkar Saim. Intrazeolite Ruthenium(0) Nanoclusters: a Superb Catalyst for the Hydrogenation of Benzene and the Hydrolysis of Sodium Borohydride [J]. Langmuir, 2008, 24 (14): 7065-7067.

[8] Cheng Fangyi, Ma Hua, Li Yueming, et al. Ni1-xPtx (x = 0−0.12) Hollow Spheres as Catalysts for Hydrogen Generation from Ammonia Borane [J]. Inorganic Chemistry, 2007, 46 (3): 788-794.

[9] Patel N., Fernandes R., Santini A., et al. Co–B nanoparticles supported on carbon film synthesized by pulsed laser deposition for hydrolysis of ammonia borane [J]. International Journal of Hydrogen Energy, 2012, 37 (2): 2007-2013.

[10] Umegaki Tetsuo, Yan Jun-Min, Zhang Xin-Bo, et al. Hollow Ni–SiO2nanosphere-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage [J]. Journal of Power Sources, 2009, 191 (2): 209-216.

[11] Qiu F. Y., Wang Y. J., Wang Y. P., et al. Dehydrogenation of ammonia borane catalyzed by in situ synthesized Fe–Co nano-alloy in aqueous solution [J]. Catalysis Today, 2011, 170 (1): 64-68.

[12] Zhao J., Ma H., Chen J. Improved hydrogen generation from alkaline NaBH4 solution using carbon-supported Co–B as catalysts [J]. International Journal of Hydrogen Energy, 2007, 32 (18): 4711-4716.

[13] Ding Xin-Long, Yuan Xianxia, Jia Chao, et al. Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using Cobalt–Copper–Boride (Co–Cu–B) catalysts [J]. International Journal of Hydrogen Energy, 2010, 35 (20): 11077-11084.

[14] Lu Yi-Chun, Chen Miao-Sheng, Chen Yu-Wen. Hydrogen generation by sodium borohydride hydrolysis on nanosized CoB catalysts supported on TiO2, Al2O3and CeO2[J]. International Journal of Hydrogen Energy, 2012, 37 (5): 4254-4258.

[15] Li Zhong, Li Hongliang, Wang Lina, et al. Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using supported amorphous alloy catalysts (Ni–Co–P/γ-Al2O3) [J]. International Journal of Hydrogen Energy, 2014, 39 (27): 14935-14941.

[16] Rakap Murat, Kalu Egwu Eric, Özkar Saim. Cobalt–nickel–phosphorus supported on Pd-activated TiO2(Co–Ni–P/Pd-TiO2) as cost-effective and reusable catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution [J]. Journal of Alloys and Compounds, 2011, 509 (25): 7016-7021.

[17] Xu Qiang, Chandra Manish. A portable hydrogen generation system: Catalytic hydrolysis of ammonia–borane [J]. Journal of Alloys and Compounds, 2007, 446-447: 729-732.

[18] Liu Cheng-Hong, Chen Bing-Hung, Hsueh Chan-Li, et al. Hydrogen generation from hydrolysis of sodium borohydride using Ni–Ru nanocomposite as catalysts [J]. International Journal of Hydrogen Energy, 2009, 34 (5): 2153-2163.

[19] Amendola Steven C., Sharp-Goldman Stefanie L., Janjua M. Saleem, et al. An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst [J]. Journal of Power Sources, 2000, 85 (2): 186-189.

Study on the Catalytic Hydrogen Generation Performance ofAmmonia Borane by Ultrafine Nanostructured Co Catalyst

1,1,23111

(1. Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Liaoning Shenyang 110034, China;2. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China;3. Experimental Center, Shenyang Normal University, Liaoning Shenyang 110034)

Ultrafine nanostructured Co catalyst was prepared by inverse microemulsion method, and the effect of the ratio of water and oil on microstructure and catalytic properties was investigated. The results showed that the optimum ratio of water and oil was 1:7. The morphology of the catalyst was studied by transmission electron microscopy (TEM). The prepared catalyst exhibited nanoparticlestructure with the diameter of about 4~6 nm. The results showed that the prepared Co catalyst presented high performance in the hydrolysis of NH3BH3. The rate of hydrogen productionwas 1055.2 mL·(min·g)-1. The activation energy of NH3BH3hydrolysis in the presence of the ultrafine nanostructureed Co was 47.0 kJ mol-1, which was lower than that of some noble metal based catalysts. The results showed that the ultrafine nanostructureed Co catalyst had high catalytic activity in the hydrolysis of NH3BH3.

ultrafine nanostructureed Co catalyst; inverse microemulsion method; ammonia

国家自然基金青年基金项目(51501118);辽宁省教育厅科学研究一般项目(L2015500);沈阳市科技局项目(F16–205–1–17)。

2017-08-09

孟伟(1990-),女,硕士,辽宁葫芦岛市人,2016年毕业于沈阳师范大学应用化学专业,研究方向:新能源材料。

王艳(1980-),女,博士,副教授,硕士研究生导师,主要从事新能源材料和电化学领域的研究工作。

TQ 032

A

1004-0935(2017)11-1045-04

猜你喜欢
水油贵金属制氢
《贵金属》简介
天然气制氢在氯碱产业中的作用
贵金属单原子催化剂的制备及其在CO、VOCs完全氧化反应中的应用
水油轻松分离
艰辛与辉煌
——庆祝中国共产党成立一百周年贵金属纪念币展
制氢转化炉辐射段炉管检测方法概述及展望
赢创全新膜技术有望降低电解水制氢的成本
上市储量评估中水驱曲线分年产量计算新方法
千瓦级燃料电池热电联产系统及其制氢系统模拟
我能让水油相融哦