基于16S rDNA高通量测序技术研究转基因作物对根际细菌群落结构的影响

2018-04-13 00:46梁晋刚刘鹏程张秀杰
江苏农业科学 2018年6期
关键词:高通量根际转基因

梁晋刚, 刘鹏程, 张秀杰

(农业部科技发展中心,北京 100176)

几十年来,转基因作物释放对生态环境的影响一直是社会公众关注的一个重要问题,包括对土壤生态环境的影响[1-4]。土壤细菌是土壤中数量最丰富、分布最广泛的微生物类群,广泛参与有机物质分解、养分释放和能量转移等过程,其多样性和活性是保持土壤生态系统稳定的基础之一。根际细菌对外界干扰比较敏感,不仅受到植物基因型影响,也受土壤类型、农业耕作管理、季节变化等影响[5-9]。准确检测转基因作物对根际细菌群落组成和结构的影响,是评估转基因作物释放后土壤生态风险的重要基础[10-11]。

近年来,分子生物学的不断发展为根际细菌群落结构的研究提供了新思路,其中,以编码rRNA的rDNA基因为基础的高通量测序技术尤受青睐,该技术准确、灵敏,具有较高的通量,已经被广泛应用于土壤微生物遗传多样性的研究领域中[12-15]。目前,市面上常用的用于研究环境微生物的高通量测序平台有Illumina MiSeq、Roche 454。针对细菌的16S rDNA基因序列分析,MiSeq凭借其测序读段长、测序周期短、通量大等特点,成为使用最为普遍的测序平台[16]。

16S核糖体RNA(16S ribosomal RNA,简称16S rRNA)是原核生物的核糖体中30S亚基的组成部分。由于不同种的真细菌与古细菌之间的16S rRNA编码基因16S rDNA是高度保守的,且16S rDNA序列长度适中(1 540 bp),包括9个高可变区(hypervariable region)和8个保守区(constant region),因此,常被用于对各种生物进行系统发生学方面的研究[17]。利用16S rDNA的通用引物进行PCR扩增,获得绝大部分微生物16S rDNA高可变区的扩增产物,构建扩增产物的文库,运用Illumina MiSeq平台或Roche 454平台进行高通量测序,然后比较分析测序数据,对土壤微生物群落的多样性进行研究[18-20]。

目前,已有研究者利用16S rDNA测序技术来研究各种环境样品中微生物的多样性[21-30]。迄今为止,大部分的研究结果均表明,转基因作物的释放对土壤微生物没有影响或有很小的影响,且影响是短暂的[31-42]。

1 转基因大豆对根际细菌群落结构的影响

Liang等通过收集高产高蛋氨酸转基因大豆ZD91和其对应的非转基因大豆ZD在鼓粒期时的根际土壤样品,采用Roche 454焦磷酸测序技术对大豆根际土壤细菌16S rDNA V4区序列扩增子进行高通量测序及分析,发现在这种转基因大豆和其亲本的根际土壤中,均存在酸杆菌门(Acidobacteria)、变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)等细菌类群,但两者的细菌群落结构无显著性差异[43]。Lu等采用Illumina MiSeq平台对16S rDNA V4区序列扩增子进行高通量测序,发现抗草甘膦除草剂转基因大豆ZUTS31在鼓粒期对根际细菌群落的α、β多样性无显著性影响[44]。Lu等利用同样的方法,发现抗除草剂转基因大豆NZL06-698对土壤微生物群落,特别是对固氮菌群产生的影响,表现为微生物物种丰度和多样性降低,固氮菌群丰度降低[45]。

2 转基因玉米对根际细菌群落结构的影响

Barriuso等连续4年收集根际土壤样品,并采用Roche 454焦磷酸测序技术对根际土壤细菌16S rDNA V6区序列扩增子进行高通量测序及分析,发现抗虫玉米MON810与对照玉米品种相比,抗虫玉米MON810对根际细菌群落结构无显著性影响[46]。Barriuso等采用相同的方法,连续3年监测喷施草甘膦对耐除草剂玉米NK603根际细菌群落结构的影响。结果表明,草甘膦对玉米NK603根际细菌群落结构无显著性影响[47]。Dohrmann等利用Roche 454焦磷酸测序技术测定了细菌16S rDNA V7+V8区序列,发现抗虫玉米MON 89034×MON 88017对根际细菌群落结构无显著性影响[48]。

3 其他转基因植物对根际细菌群落结构的影响

Sohn等应用454平台测序测定16S rRNA基因V3-V4变异区序列,发现白藜芦醇强化转基因水稻RS526对根际土壤细菌群落结构无显著性影响[49]。Zhu等利用Illumina MiSeq平台测定16S rRNA基因V4区序列,分析了种植8年转基因白杨树D520、D521后的根际土壤细菌结构,发现转基因白杨树对细菌多样性和群落结构无显著性影响[50]。Debruyn等利用Illumina MiSeq平台测定16S rRNA基因V4区,发现木质素含量降低的转基因柳枝稷对根际细菌多样性、丰富度和群落组成均无显著性影响[51]。

4 总结与展望

16S rDNA相对分子量大小适中,突变率小,基于16S rDNA的高通量测序技术已被广泛应用于微生物系统进化、分类及多样性分析研究中。在16S rDNA高可变区的选择方面还存在一定争议,由于目前二代高通量测序的读长限制,仅能针对16S rDNA的某一段可变区进行测序,有的选择测单可变区(V3、V4、V5、V6、V7),有的选择对连续可变区(V1-V2、V1-V3、V3-V4、V3-V5、V4-V5、V4-V6、V5-V6、V6-V7、V5-V8、V6-V8、V7-V8、V1-V8、V5-V9、V6-V9、nearly full-length)进行16S rDNA测序[52-65]。Sun等研究比较了16S不同区域的测序结果,发现V4-V5区(515F/907R 或515F/926R)是最佳的测序区域,造成的基因组内异质性最小,该区域是Roche 454测序时代最常用的区域[66]。在Illumina时代,由于平台测序长度的限制,V4单区测序(515F/806R)被更为广泛地使用,同时这对引物也是地球微生物组计划(Earth Microbiome Project,简称EMP)中推荐使用的引物序列,它们将是16S测序的主力[67]。

16S rDNA高通量测序技术对土壤微生物物种多样性、结构多样性、功能多样性和遗传多样性研究的迅猛发展起到了重要作用[68]。然而,这种方法对于转基因的研究来说,存在着不能检测受体、转化体、喷洒除草剂转化体对各类土壤微生物功能(包括氮循环、磷循环、碳循环等)的各类基因丰度等影响的缺点[16]。同样地,16S rDNA扩增子高通量测序本身也常受到一些条件的影响,如PCR扩增体系对高通量测序的影响,PCR扩增偏好性对测序的影响,PCR扩增循环数对原始物种相对丰度的影响等[69]。在未来的研究中,16S rDNA高通量测序技术在转基因作物对土壤细菌影响的研究中的运用会越来越普及,随着测序成本明显下降,土壤宏基因组测序为研究微生物群落结构与功能等提供了一种新的选择,相比16S rDNA高通量测序,该测序方法能够更全面地分析微生物的物种及基因等方面的多样性。由于土壤微生物群落组成复杂,在实际应用中,应该综合考虑各研究方法的优缺点,取长补短,以便在土壤微生物多样性研究中获得更为全面且准确的信息,尽快建立对土壤生态系统安全的评价技术体系,并对转基因作物的环境安全性作出全面、科学、客观的评价[70-72]。

致谢:感谢南京大学生命科学学院陆桂华副研究员、南京农业大学植物保护学院顾沁博士在论文写作过程中给予的指导和帮助。

参考文献:

[1]Hilbeck A,Binimelis R,Defarge N,et al. No scientific consensus on GMO safety[J]. Environmental Sciences Europe,2015,27:4.

[2]国际农业生物技术应用服务组织.2016年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志,2017,37(4):1-8.

[3]Tsatsakis A M,Nawaz M A,Kouretas D,et al. Environmental impacts of genetically modified plants:a review[J]. Environmental Research,2017,156(8):818-833.

[4]Tsatsakis A M,Nawaz M A,Tutelyan V A,et al. Impact on environment,ecosystem,diversity and health from culturing and using GMOs as feed and food[J]. Food and Chemical Toxicology,2017,107(A):108-121.

[5]Berg G,Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere[J]. FEMS Microbiology Ecology,2009,68(1):1-13.

[6]Aira M,Gomez-Brandon M,Lazcano C,et al. Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities[J]. Soil Biology & Biochemistry,2010,42(12):2276-2281.

[8]Peiffer J A,Spor A,Koren O,et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(16):6548-6553.

[9]Edwards J,Johnson C,Santos-Medellin C A,et al. Structure,variation,and assembly of the root-associated microbiomes of rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(8):911-920.

[10]Filion M. Do transgenic plants affect rhizobacteria populations?[J]. Microbial Biotechnology,2008,1(6):463-475.

[11]Wu J R,Yu M Z,Xu J H,et al. Impact of transgenic wheat with wheat yellow mosaic virus resistance on microbial community diversity and enzyme activity in rhizosphere soil[J]. PLoS One,2014,9(6):e98394.

[12]Barriuso J,Marin S,Mellado R P. Effect of the herbicide glyphosate on glyphosate-tolerant maize rhizobacterial communities:a comparison with pre-emergency applied herbicide consisting of a combination of acetochlor and terbuthylazine[J]. Environmental Microbiology,2010,12(4):1021-1030.

[13]Singh A K,Dubey S K. Current trends inBtcrops and their fate on associated microbial community dynamics:a review[J]. Protoplasma,2016,253(3):663-681.

[14]Qin J,Li R,Raes J,et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature,2010,464(7285):59-65.

[15]Singh A K,Dubey S. Transgenic plants and soil microbes[M]//Dubey S K,Pandey A,Sangwan R S. Current developments in biotechnology and bioengineering:crop modification,nutrition,and food production. Amsterdam:Elsevier,2017:163-185.

[16]朱银玲. 转EPSPS基因抗除草剂大豆对土壤原核微生物群落生态影响的研究[D]. 南京:南京大学,2015.

[17]杨永华,陆桂华,戚金亮,等. 基于16S rDNA深度测序检测不同大豆根际土壤原核微生物的方法:105525025 A[P]. 2016-02-17.

[18]Coenye T,Vandamme P. Intragenomic heterogeneity between multiple 16S ribosomal RNA operons in sequenced bacterial genomes[J]. FEMS Microbiology Letters,2003,228(1):45-49.

[19]Weisburg W G,Barns S M,Pelletier D A,et al. 16S ribosomal DNA amplification for phylogenetic study[J]. Journal of Bacteriology,1991,173(2):697-703.

[20]Woese C R,Fox G E. Phylogenetic structure of the prokaryotic domain:the primary kingdoms[J]. Proceedings of the National Academy of Sciences of the United States of America,1977,74(11):5088-5090.

[21]Chen W,Liu F,Ling Z,et al. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer[J]. PLoS One,2012,7(6):e39743.

[22]Hirsch J,Strohmeier S,Pfannkuchen M A. Assessment of bacterial endosymbiont diversity inOtiorhynchusspp. (Coleoptera:Curculionidae) larvae using a multitag 454 pyrosequencing approach[J]. BMC Microbiology,2012,12(S1):S6.

[24]Lee O O,Wang Y,Yang J K,et al. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea[J]. ISME Journal,2011,5(4):650-664.

[25]Nacke H,Thürmer A,Wollherr A,et al. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils[J]. PLoS One,2011,6(2):e17000.

[26]Qiu M H,Zhang R F,Xue C,et al. Application of bio-organic fertilizer can controlFusariumwilt of cucumber plants by regulating microbial community of rhizosphere soil[J]. Biology and Fertility of Soils,2012,48(7):807-816.

[27]Yu K,Zhang T. Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge[J]. PLoS One,2012,7(5):e38183.

[28]Zhang C,Zhang M,Wang S,et al. Interactions between gut microbiota,host genetics and diet relevant to development of metabolic syndromes in mice[J]. ISME Journal,2010,4(2):232-241.

[29]Zhang T,Zhang X X,Ye L. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge[J]. PLoS One,2011,6(10):e26041.

[30]Zhou H W,Li D F,Tam N F,et al. BIPES,a cost-effective high-throughput method for assessing microbial diversity[J]. ISME Journal,2011,5(4):741-749.

[31]Demaneche S,Sanguin H,Poté J,et al. Antibiotic-resistant soil bacteria in transgenic plant fields[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(10):3957-3962.

[32]Di Giovanni G D,Watrud L S,Seidler R J,et al. Comparison of parental and transgenic alfalfa rhizosphere bacterial communities using Biolog GN metabolic fingerprinting and enterobacterial repetitive intergenic consensus sequence-PCR (ERIC-PCR)[J]. Microbial Ecology,1999,37(2):129-139.

[33]Duc C,Nentwig W,Lindfeld A. No adverse effect of genetically modified antifungal wheat on decomposition dynamics and the soil fauna community :a field study[J]. PLoS One,2011,6(10):e25014.

[34]Duke S O,Lydon J,Koskinen W C,et al. Glyphosate effects on plant mineral nutrition,crop rhizosphere microbiota,and plant disease in glyphosate-resistant crops[J]. Journal of Agricultural and Food Chemistry,2012,60(42):10375-10397.

[35]Hannula S E,De Boer W,Van Veen J. A 3-year study reveals that plant growth stage,season and field site affect soil fungal communities while cultivar and GM-trait have minor effects[J]. PLoS One,2012,7(4):e33819.

[36]Heuer H,Kroppenstedt R M,Lottmann J,et al. Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negligible relative to natural factors[J]. Appl Environ Microbiol,2002,68(3):1325-1335.

[37]Hur M,Kim Y,Song H R,et al. Effect of genetically modified poplars on soil microbial communities during the phytoremediation of waste mine tailings[J]. Applied and Environmental Microbiology,2011,77(21):7611-7619.

[38]Li X G,Zhang T L,Wang X X,et al. The composition of root exudates from two different resistant peanut cultivars and their effects on the growth of soil-borne pathogen[J]. International Journal of Biological Sciences,2013,9(2):164-173.

[39]Liu B,Zeng Q,Yan F M,et al. Effects of transgenic plants on soil microorganisms[J]. Plant and Soil,2005,271(1/2):1-13.

[40]Meyer J B,Song-Wilson Y,Foetzki A A,et al. Does wheat genetically modified for disease resistance affect root-colonizing pseudomonads and arbuscular mycorrhizal fungi?[J]. PLoS One,2013,8(1):e53825.

[41]Milling A,Smalla K,Maidl F X,et al. Effects of transgenic potatoes with an altered starch composition on the diversity of soil and rhizosphere bacteria and fungi[J]. Plant and Soil,2004,266(1/2):23-39.

[42]Rasche F,Hodl V,Poll C,et al. Rhizosphere bacteria affected by transgenic potatoes with antibacterial activities compared with the effects of soil,wild-type potatoes,vegetation stage and pathogen exposure[J]. FEMS Microbiology Ecology,2006,56(2):219-235.

[43]Liang J A,Sun S,Ji J,et al. Comparison of the rhizosphere bacterial communities of zigongdongdou soybean and a high-methionine transgenic line of this cultivar[J]. PLoS One,2014,9(7):e103343.

[44]Lu G H,Hua X M,Cheng J,et al. Impact of glyphosate on the rhizosphere microbial communities of an EPSPS-transgenic soybean line ZUTS31 by metagenome sequencing[J]. Current Genomics,2018,19(1):36-49.

[45]Lu G H,Zhu Y L,Kong L R,et al. Impact of a glyphosate-tolerant soybean line on the rhizobacteria,revealed by illumina MiSeq[J]. Journal of Microbiology and Biotechnology,2017,27(3):561-572.

[46]Barriuso J,Valverde J R,Mellado R P. Effect of cry1Ab protein on rhizobacterial communities of Bt-maize over a four-year cultivation period[J]. PLoS One,2012,7(4):e35481.

[47]Barriuso J,Marin S,Mellado R P. Potential accumulative effect of the herbicide glyphosate on glyphosate-tolerant maize rhizobacterial communities over a three-year cultivation period[J]. PLoS One,2011,6(11):e27558.

[48]Dohrmann A B,Kueting M,Juenemann S A,et al. Importance of rare taxa for bacterial diversity in the rhizosphere ofBt- and conventional maize varieties[J]. ISME Journal,2013,7(1):37-49.

[49]Sohn S I,Oh Y J,Kim B Y,et al. Effect of genetically modified rice producing resveratrol on the soil microbial communities[J]. Journal of the Korean Society for Applied Biological Chemistry,2015,58(6):795-805.

[50]Zhu W X,Chu Y,Ding C J,et al. Assessing bacterial communities in the rhizosphere of 8-year-old genetically modified poplar (Populusspp.)[J]. Journal of Forestry Research,2016,27(4):939-947.

[51]Debruyn J M,Bevard D A,Essington M E,et al. Field‐grown transgenic switchgrass(PanicumvirgatumL.)with altered lignin does not affect soil chemistry,microbiology,and carbon storage potential[J]. Global Change Biology Bioenergy,2017,9(6):1100-1109.

[52]Huse S M,Dethlefsen L,Huber J A,et al. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing[J]. PLoS Genetics,2008,4(11):e1000255.

[53]Faith J J,Guruge J L,Charbonneau M A,et al. The long-term stability of the human gut microbiota[J]. Science,2013,341(6141):1237439.

[54]Lazarevic V,Whiteson K,Huse S,et al. Metagenomic study of the oral microbiota by Illumina high-throughput sequencing[J]. Journal of Microbiological Methods,2009,79(3):266-271.

[55]Sogin M L,Morrison H G,Huber J A,et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(32):12115-12120.

[56]Youssef N,Sheik C S,Krumholz L R,et al. Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys[J]. Applied and Environmental Microbiology,2009,75(16):5227-5236.

[57]Zhao L L,Wang G,Siegel P,et al. Quantitative genetic background of the host influences gut microbiomes in chickens[J]. Scientific Reports,2013,3:1163.

[58]Takahashi S,Tomita J,Nishioka K,et al. Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing[J]. PLoS One,2014,9(8):e105592.

[59]Cai H Y,Jiang H L,Krumholz L R,et al. Bacterial community composition of size-fractioned aggregates within the phycosphere of cyanobacterial blooms in a eutrophic freshwater lake[J]. PLoS One,2014,9(8):e102879.

[60]Xiong J B,Liu Y Q,Lin X,et al. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau[J]. Environmental Microbiology,2012,14(9):2457-2466.

[61]He Y,Zhou B J,Deng G H,et al. Comparison of microbial diversity determined with the same variable tag sequence extracted from two different PCR amplicons[J]. BMC Microbiology,2013,13(1):208.

[62]Liu X F,Fan H L,Ding X B,et al. Analysis of the gut microbiota by high-throughput sequencing of the V5-V6 regions of the 16S rRNA gene in donkey[J]. Current Microbiology,2014,68(5):657-662.

[63]Eckburg P B,Bik E M,Bernstein C N,et al. Diversity of the human intestinal microbial flora[J]. Science,2005,308(5728):1635-1638.

[64]Roesch L F,Fulthorpe R R,Riva A,et al. Pyrosequencing enumerates and contrasts soil microbial diversity[J]. ISME Journal,2007,1(4):283-290.

[65]Sundarakrishnan B,Pushpanathan M A,Rajendhran J,et al. Assessment of microbial richness in pelagic sediment of andaman sea by bacterial tag encoded FLX titanium amplicon pyrosequencing (bTEFAP)[J]. Indian Journal of Microbiology,2012,52(4):544-550.

[66]Sun D L,Jiang X,Wu Q L,et al. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity[J]. Applied and Environmental Microbiology,2013,79(19):5962-5969.

[67]Gilbert J A,Jansson J K,Knight R. The earth microbiome project:successes and aspirations[J]. BMC Biology,2014,12(1):69.

[68]楼骏,柳勇,李延. 高通量测序技术在土壤微生物多样性研究中的研究进展[J]. 中国农学通报,2014,30(15):256-260.

[69]刘驰,李家宝,芮俊鹏,等. 16S rRNA基因在微生物生态学中的应用[J]. 生态学报,2015,35(9):2769-2788.

[70]梁晋刚,张正光. 转基因作物种植对土壤生态系统影响的研究进展[J]. 作物杂志,2017(4):1-6.

[71]梁晋刚,张秀杰. 转基因作物对土壤微生物多样性影响的研究策略[J]. 生物技术通报,2017,33(9):1-6.

[72]梁晋刚,孟芳,张正光. 转基因高蛋氨酸大豆对根际土壤主要有机元素和酶活性的影响[J]. 生物安全学报,2017,26(4):301-306.

猜你喜欢
高通量根际转基因
高通量卫星网络及网络漫游关键技术
探秘转基因
转基因,你吃了吗?
根际微生物对植物与土壤交互调控的研究进展
高通量血液透析临床研究进展
Ka频段高通量卫星在铁路通信中的应用探讨
黄花蒿叶水提物对三七根际尖孢镰刀菌生长的抑制作用
中国通信卫星开启高通量时代
促植物生长根际细菌HG28-5对黄瓜苗期生长及根际土壤微生态的影响
天然的转基因天然的转基因“工程师”及其对转基因食品的意蕴