基于可信度因子推理模型的电池组均衡方法

2019-05-31 02:04刘征宇王雪松
中国机械工程 2019年9期
关键词:端电压电池组模组

刘征宇 王雪松 汤 伟 严 鹏

1.合肥工业大学机械工程学院,合肥,2300092.工业安全与应急技术安徽省重点实验室,合肥,230009

0 引言

为了满足电动汽车的功率和容量要求,需要将上百个电池串并联成组使用,而电池电压、容量、内阻等的不一致性会影响电池组的性能和寿命。电池均衡技术是缓解电池不一致性问题的重要途径,好的电池均衡技术能够有效提高电池组的寿命和能量利用率[1]。电池均衡技术的研究内容包括均衡拓扑和均衡策略,均衡策略按照判断依据可分为以电池荷电状态(state of charge,SOC)一致为目标的均衡策略[2]、以端电压一致为目标的均衡策略[3]以及以剩余容量一致为目标的均衡策略[4]。串联电池组以任意一节单体电池的端电压达到充放电截止电压作为充放电截止点,并且端电压测量方便、精度高,以端电压为均衡目标能够减小电池间的差异,防止过充过放[5-6],因此,以端电压一致为目标的均衡策略应用最为广泛。文献[7]提出一种控制单体电池充电电流的方法来减小电池电压差异。文献[8]提出了一种基于动力电池模型参数预估的均衡策略,根据平台期能量差异实现单体一致性能量管理。文献[9]利用模糊PID控制方法,将充电过程中单体电池的一致性作为控制目标实现均衡。但是工作在平台期的锂电池电压随时间变化十分缓慢,且差异很小,很难准确判断电池间的均衡性,以电压为均衡目标具有盲目性和振荡性。而SOC是时间的累积量,与开路电压(open circuit voltage, OCV)有着较为稳定的关系,并且在平台期分辨率高,能够有效地弥补平台期电压均衡判断问题。

为了更好地反映电池组的一致性,本文以端电压和SOC为均衡判断依据,提出一种新型的均衡方法。该均衡方法基于分组均衡拓扑结构,定义了单体电池和模组的不均衡状态可信度,并利用可信度因子(credibility factor,C-F)推理模型对电池组的整体不一致性进行综合评价,从而减小电池组的电压和SOC的不一致性,提高电池组的整体能量利用率。

1 分组均衡拓扑

现有的均衡拓扑按照均衡原理可分为主动均衡和被动均衡两种,主动均衡拓扑因具有效率高、消耗少等优点而成为当前研究的热点[10]。主动均衡拓扑按能量流向可分为单体到组型结构[11](cell to pack)、组到单体型结构[12](pack to cell)、单体到单体型结构[13](cell to cell)和单体与组双向型结构[14](cell to pack to cell),其中单体与组双向型结构因均衡速度快、能量转移效率高等优点被广泛采用。本文采用单体与组双向型电路作为分组均衡电路,如图1所示。该电路以串联电池组作为一个独立均衡单元(individual cell equalizer,ICE),模组内的单体电池之间以反激式变压器作为均衡媒介,模组之间通过双向Cuk电路实现能量转移,能量转移的方向由MOSFET(metal-oxide-semiconductor field-effect transistor)开关Qm1、Qm2的通断状态决定,开关状态由PWM(pulse width madulation)信号控制。

图1 分组均衡拓扑电路Fig.1 The grouped topology circuit

图2为相邻两个模组能量传递原理图,以模组M1向模组M2传递能量为例,断开开关Qm2,传递过程分两个阶段,如图2所示。

(a)Qm1导通时原理图

(b)Qm1关断时原理图图2 模组能量传递原理图Fig.2 Equalization principle of the equalizer circuit

其中,模组之间能量传递过程中的平均电流IL1和IL2计算如下式所示[15]:

(1)

式中,Ts为PWM信号周期;VLm1、VLm2、VC1分别为Lm1、Lm2和C1两端电压;IL1、IL2分别为流经L1和L2的平均电流;D为占空比。

由式(1)可知,在控制信号周期不变的情况下,可控制占空比D来调整均衡电流。

图3所示为模块化的均衡拓扑结构,可实现多个模组之间的能量转移,通过控制开关T1、T2、T3、T4的通断状态,可实现能量在组内均衡和组间均衡的切换。该电路结合了反激式变换器能量传递的高效性和易控制性的优点,又避免了因电池数量变化导致需要变更变压器的问题,同时模块化电路可运用于单体数量较多的电池组,大大简化了拓扑结构。

图3 模块化的均衡拓扑结构Fig.3 The modular equalizer circuit

2 不均衡可信度

针对传统电压均衡指标的不确定性问题,本文提出了一种新型均衡指标,即不均衡可信度。首先定义单体电池端电压和SOC的不均衡可信度(individual imbalance degree, IID),然后通过C-F模型推理出电池组整体不均衡可信度(overall imbalance degree,OID),最终确定模组能量状态和电池组整体能量状态。

图4 基于分组拓扑结构的C-F模型不均衡可信度推理模型Fig.4 The reasoning model of credibility factor based on grouped topology

2.1 计算单体不均衡可信度

(2)

θ=|Ux-Uavg|

式中,θ为单体电池端电压与电池组平均电压之差的绝对值,表示单体电压偏离平均值Uavg的程度。

以SOC为均衡目标,与电压均衡相似,由单体x的荷电状态推导出的该单体电池不均衡可信度为

(3)

式中,φ为单体x的SOC与电池组平均SOC之差的绝对值(单位是%),即φ=|Sx-Savg|,Savg为单体电池荷电状态的平均值。

(4)

2.2 计算电池组整体不均衡可信度

电池整体不均衡度反映了电池组整体能量状态的离散程度,FU,x表示单体x对整体电压不均衡度的影响,并定义FU,x为

(5)

(6)

式中,Ui(Uj)为单体i(j)的端电压;q1为电池组内满足|Uavg-Ux|≤ε的单体数量;q2为电池组内满足|Uavg-Ux|>ε的单体数量;ε为电池组离散度。

(7)

(8)

(9)

整体不均衡可信度FO是端电压U和SOC不均衡可信度的综合,即

(10)

式中,α、β分别为端电压和SOC对整体不均衡的影响因子。

影响因子可由电池组所有单体的标准差求得:

(11)

式中,σU和σS分别为电池组单体端电压和SOC的标准差。

60年风雨兼程,60载春华秋实。60年来,勤劳勇敢的开磷人砥砺奋进,从一个地处贵州大山深处的单一磷矿石生产企业发展成为一个立足贵州、服务全国、面向世界的现代化大型企业集团。

2.3 计算模组状态系数

(12)

式中,Uk为模组k的平均电压;UAVG为电池组平均电压;SAVG为电池组平均荷电状态。

由模组状态系数Hk来决定模组的能量转移方向,即

(13)

式中,λ1、λ2分别为模组放电系数和模组充电系数。

Hk>λ1时模组的整体能量较高,Hk<λ2时模组的整体能量较低,且满足λ1=-λ2。结合式(2)和式(3),可得

3 基于C-F推理的均衡策略

在电池组均衡过程中设置采样时间为T,该时间为均衡判断和均衡操作的基本时间单元,均衡策略是在每个采样周期内完成的。基于C-F推理模型的均衡策略如图5所示,具体过程如下:

图5 基于可信度推理的均衡策略Fig.5 The battery equalization strategy based on reasoning model of credibility factor

4 实验与分析

使用经过400次充放电循环(循环寿命2 000次)的18节电池分两组进行充放电实验。每组9节电池串联,如图3所示,电池组由3个模组组成,每个模组由3节单体电池串联而成。该型号电池额定容量为1 100 mA·h,额定电压为3.2 V,充电截止电压为3.6 V,放电截止电压为2.0 V。每组进行两次实验,一次是以25 mV固定阈值为均衡条件的充放电实验(以下称“固定阈值电压实验”),一次是基于C-F推理的均衡策略的充放电实验(以下称“C-F推理实验”)。

4.1 充电实验

将A组(A1~A9)的9节电池独立标准放空,然后串联进行固定阈值电压充电实验,充电电流为1C(C指充放电倍率,1C表示1 h放完电的电流强度)。当任意一个单体达到3.6 V时停止充电,并记录每个单体的端电压和SOC。然后再次独立标准放空,进行C-F推理充电实验。

图6所示为C-F推理充电实验均衡过程(从均衡开启到均衡结束)中各单体电池的SOC和端电压的变化曲线,图7所示为充电结束后各单体的端电压和SOC分布情况。最后,在充电实验结束(电池组充满电量)后计算出2次实验结束后每个单体电池的剩余容量与额定容量的百分比,如表1所示。

(a)SOC曲线

(b)端电压曲线图6 充电实验均衡过程SOC和端电压曲线Fig.6 The curves of SOC and terminal voltage on charge equalization process

(a)各单体的端电压

(b)各单体的SOC图7 充电结束单体端电压和SOC分布Fig.7 Voltage and SOC distribution at the end of charge

电池序号固定阈值电压实验C-F推理实验A185.1288.23A284.6588.25A383.5787.56A482.4286.58A585.6589.56A685.8487.88A784.1389.06A886.2590.15A985.7888.52

4.2 放电实验

将B组(B1~B9)的9节电池独立充电,使每个电池的初始能量一致。将各单体电池串联成组以固定阈值电压为均衡目标进行1C放电实验,当任意一节单体电压达到2.0 V时停止放电;然后独立充电至初始能量一致,串联进行C-F推理放电实验。

图8为C-F推理放电实验均衡过程(从均衡开启到均衡结束)中单体电池的SOC和端电压的变化曲线,图9所示为放电结束后各单体的端电压和SOC分布情况。计算出2次实验过程中各单体电池的剩余容量与额定容量的百分比,如表2所示。

4.3 结果分析

(a)SOC曲线

(b)端电压曲线图8 放电实验均衡过程SOC和端电压曲线Fig.8 The curves of SOC and terminal voltage on discharge equalization process

(a)各单体的端电压

(b)各单体的SOC图9 放电结束后单体端电压和SOC分布Fig.9 Fig.9 Voltage and SOC distribution at the end of discharge

表2 放电实验结果

综上所述,通过对比两个均衡策略的实验结果可以看出,相较于传统的固定电压阈值的均衡策略,新型的均衡方法能够更加有效地改善单体之间的不一致性,提高电池组的能量利用率。

5 结语

本文基于改进的双向Cuk分组拓扑电路,以SOC和端电压为均衡评价指标,提出了一种基于C-F推理模型的电池组均衡方法,相应的充放电对比实验证明该方案能够更好地实现电池组均衡能量管理,改善单体电池的不一致性,提高电池组的能量利用率。今后的工作将对电池组的热均衡,尤其是电量均衡和热均衡的集成管理进行研究,进一步提高均衡效率及电池组能量的利用率。

猜你喜欢
端电压电池组模组
低电压下微能RC 脉冲电源放电波形研究
某抽水蓄能机组励磁低励限制器动作分析处理
基于融合架构的多路服务器系统架构设计
光学薄膜技术及在背光模组中的应用研究
无刷直流电机无位置传感器控制新方法与实现
高速公路表贴透镜模组设计浅谈
浅谈石墨烯材料在LED路灯模组中的应用及该模组的设计
2017年7月原电池及原电池组产量同比增长2.53%
锂离子电池组SOC估计算法的比较研究
锂离子电池组不一致性及其弥补措施