地铁35 kV环网数字通信电流保护测试方法

2019-06-19 12:39陈继勇徐文亮
城市轨道交通研究 2019年6期
关键词:数字通信环网过流

陈继勇 徐文亮 郑 杰

(成都地铁运营有限公司,610058,成都∥第一作者,工程师)

地铁35 kV中压环网数字通信电流保护能适应多级串行供电系统,具有“绝对选择性”,解决了传统保护的级差配合难题,适应地铁实际运行环境,可有效实现地铁中压环网大分区供电。其在供电方式调整时能自动适应“正常供电”和“支援供电”两种运行方式,保护定值不再需要进行调整,为地铁线路快速恢复供电提供了有力保障。此外,数字通信电流保护的优越性也对校验保护方案的完整性提出了更高的要求。如何对新建线路中压环网数字通信电流保护进行全面测试校验,为地铁开通运营保驾护航,是研究此项技术现场应用的关键。

1 数字通信电流保护的实现原理

地铁交流供电系统采用环网供电方式,每个变电所设置环网进出线开关柜,并在进出线开关柜设置线网电缆及母线保护。如图1所示,数字通信电流保护常用近区加速实现,采用双差动保护形式,即后备保护装置也兼具差动功能。站内进、出线柜后备保护装置用硬接线连接,传递故障定位a信号;站间差动保护及后备保护装置用光纤连接,传递过流同步开放信号。正常运行过程中过流Ⅲ段永久运行,过流Ⅰ段处于闭锁状态,通过a信号判断是否开放过流Ⅰ段。在后备保护中,定义内部故障定位信号a,当本柜后备保护装置差动未启动且检测到大电流时定义a=1,反之a=0。本柜a=1且对侧后备装置a=0时解锁本柜过流Ⅰ段。同时通过后备光纤通道将过流开放信息发送至对端开关柜,开放对端后备装置过流Ⅰ段,成为下级站开关失灵的后备保护。所内馈线及母联保护装置不参与数字通信,通过常规时间级差实现保护选择性,动态级差确保不越级动作。当供电方向发生改变时,进、出线柜功能互换,保护功能不变,故障定位信号自动与之匹配,锁定故障范围。

2 测试技术

传统的继电保护测试仪主要应用于供电系统中单体设备单装置保护功能的精准校验,在电力系统及地铁供电系统应用极为广泛。目前国内主流品牌的继电保护测试仪售价为15万~20万元不等。随着数字通信电流保护技术在地铁环网供电系统的广泛应用,其保护实现原理决定了保护校验的特殊性,而传统的继电保护测试仪无法实现多台设备联机同步输出功能,不能对数字通信电流保护进行全面的测试校验。

由于数字通信电流保护的选择性涉及多个变电所逻辑的同步判断,任一环节出错将导致供电分区内出现越级跳闸,所以实现逻辑功能的完整校验是数字通信电流保护得以可靠应用的关键。考虑到地铁变电所所属地下环境以及保护方法的差异性,基于GPS(全球定位系统)、光纤B码等对时技术的多站同步输出测试仪,为数字通信电流保护校验提供了新的测试思路。新型的继电保护测试仪在传统测试仪的基础上集成配置了对时模块,仅增加约5 000~8 000元的费用,便可以实现多机同步输出功能;同时可充分利用地铁环网特有的站间差动预留光纤,实现继电保护测试仪多站同步信号发送接收,从而解决了环网供电系统站间同步联调的难题。

图1 环网进出线开关柜保护配置图

3 测试方法

多站同步加量测试可完全模拟实际运营期间的各类型环网故障点位,以单元化的测试思路,在多站保护装置进行故障逻辑同步判断,从而实现保护逻辑站内、站间的同步校验。

现场测试以地铁A、B、C三站同Ⅰ(Ⅱ)段母线为测试单元,A、B站放置同步加量测试仪器。利用站间预留的差动光纤实现模块时钟同步,通过设定统一输出时间实现继电保护测试仪同步加量。测试顺序以主变电所或开闭所电源出线为测试起点A站,测试主站为B站,逐站推进;每一座变电站均在测试过程中成为主站。

结合当前保护原理及测试方法,本文对典型故障实际测试方法及逻辑判断进行分析。

3.1 BC站间环网故障

如图2所示,测试时,在A站103开关柜(以下简为103,余类同)加故障电流I,时长0.4 s,硬线开入模拟103收到站内101的a=1信号;在B站101和103加故障电流I,时长0.4 s。

图2 区间环网故障示意图

观察分析B站103和C站101的差动装置、后备装置差动是否同时动作。B站103差动启动且有大电流a=0,B站101差动未启动且有大电流a=1,因此101开放过流Ⅰ段,同时软件开放A站103过流Ⅰ段。模拟A站103收到站内101发出的a=1信号,上级站接收到大电流且差动未启动的信息,即表明来电方向在A站。因测试加量时间0.4 s,即可模拟B站103和C站101的差动装置、后备装置差动动作已将故障可靠切除。A站103和B站101过流Ⅰ段保护出口延时未达到,保护立即返回。模拟B站断路器失灵,测试方法同上,通过对调整加量时长至0.6 s,模拟B站103切除故障失败,由后备保护A站103和B站101过流I段动作出口跳闸。

3.2 B站母线故障

如图3所示,测试时在A站103加故障电流I,时长0.6 s,硬线开入模拟103收到站内101的a=1信号;在B站101和103加故障电流I,时长0.6 s。

103过流Ⅰ段开放逻辑分析过程同BC环网故障。因测试加量时间0.6 s,即模拟A站103和B站101过流Ⅰ段动作出口跳闸。因A站103和B站101过流Ⅰ段保护同步开放,当B站101断路器失灵后故障点仍可通过A站103予以可靠切除。

图3 站内母线故障示意图

3.3 B站馈线故障

如图4所示,测试时在A站103加故障电流I,时长0.25 s,硬线开入模拟103收到站内101的a=1信号;在B站101和111加故障电流I,时长0.25 s。

B站101和A站103过流I段开放逻辑分析同BC环网故障。因测试加量时间0.25 s,即模拟B站111过流保护动作出口跳闸。因A站103和B站101过流I段保护同步开放,当B站111断路器失灵,故障点仍通过A站103和B站101同步可靠切除。

图4 站内馈线故障示意图

图5 站内II段母线故障示意图

3.4 B站Ⅰ母支援Ⅱ母供电,Ⅱ母故障

如图5所示,测试时在A站103加故障电流I,时长0.4 s,硬线开入模拟103收到站内101的a=1信号;在B站101和110加故障电流I,时长0.4 s。

B站101和A站103过流I段开放逻辑测试分析同BC环网故障。因测试加量时间0.4 s,即模拟B站110过流保护动作已将故障切除。A站103和B站101过流I段动作延时未达到立即返回。模拟B站母联110断路器失灵,测试方法不变,通过对调整加量时长至0.6 s,模拟B站母联110切除故障失败,由A站103和B站101过流I段动作出口跳闸。

4 结语

供电系统是地铁新线建设的先头工程和重点工程。一旦环网带电,各专业调试将全面展开,再次大面积停电调试将严重影响其他专业的调试工作。因此,应充分把握环网保护调试时间,系统性地验证各保护动作的关键故障点。为使环网保护能得以成功应用,离不开与之匹配的测试方法,应充分发掘利用新技术、新设备来打破传统的测试思路。多站同步加量测试技术在地铁供电系统的成功应用,从系统安全运行的角度来分析模拟故障点位的发生,通过全面性的功能验证,保证了地铁中压环网供电系统的可靠稳定运行,进而为地铁运营提供最有力的保障。

(收稿日期:2017-08-21)

(Continued from Commentary)

aging and generating a lot of failures,which need to be overhauled and refurbished.When it comes to signaling,due to the limitations of system mode,i.e.track circuit or intermittent ATP,or the aging of the existing system,the demand of ever growing ridership can no longer be efficiently fulfilled.

The modernization of an existing line is more complex than building a new line and faces multiple challenges.For example,we have to ensure the operation of the existing line and take the new system into consideration to allow for interfaces.Technical solutions may vary as cities are different from each other in terms of network,ridership,and signaling system.Globally speaking,in UK where the world′s earliest metro was built,the London 4 LM (Lines mondernization) is the world′s most complicated modernization project.In China,Shanghai Line 5 is the first urban rail line where operation,renovation,and construction were fulfilled at the same time.

The difficulty of resignaling resides in two aspects.Firstly,the new system replacing the old one should be as robust as the system for a new line.However,due to the constraints of the infrastructure of the existing line,many issues have to be tackled creatively.Secondly,resignaling cannot impact service or should at least keep the impact to the minimum.As there are many times of switchovers between the old and the new system,we have to ensure both safety and efficiency of commissioning.This makes it even more demanding fro system development,site deployment,and construction planning.Take Shanghai Line 5 for example.The line was originally opened in 2003.The equipment was aging and the intermittent ATP system could no longer meet the requirement of ever increasing ridership.The resignaling of Shanghai Line 5 includes not only the replacement of the the signaling system but also adding 6-car trains to run in mixed operation with the existing 4-car trains,as well as the installation of platform screen doors and renovation of auxiliary tracks.In the meanwhile,the south extension was carried out.The resignaling should have no impact on the service of the existing line.TST′s local innovation TSTCBTC®2.0 was selected for Shanghai Line 5.The system′s dual CBTC architecture enhances the core functions of signaling and helps achieve higher availability.Less wayside equipment is required,which reduces the conflict of space for outdoor facilities and suits the reality of opening in different sections and in different time.With no service disruption,the cutover between the old and new signaling system was successfully completed in Oct,2018 after more than 500 days of commissioning and over 1 000 switchovers.By the end of 2018,Shanghai Line 5 went into full line service.

The network of urban rail transport in China′s mega cities and big cities is becoming more and more mature.We are expecting fewer new lines in the future,whilst modernization of existing lines will become the new normal.Besides Shanghai,Tianjin,Dalian,Chongqing,and Guangzhou either have lines modernized or are planning for it.For urban rail operators and system integrators,it is an all-time focus of safe and efficient operation.How to ensure continuous operation with a highly available system and how to upgrade the system through highly safe modernization with little risk are what we all need to think about.The resignaling and south extension of Shanghai Line 5 made many ground-breaking achievements,providing a lot of experience that can be shared to the industry.This also sets the stage for the standardization of urban rail modernization in China.

猜你喜欢
数字通信环网过流
基于ODUk Spring方式实现基础网络环网保护的研究
数字通信技术的原理及其应用探讨
主变压器零序过流保护和间隙过流保护配合分析
不同来流条件对溢洪道过流能力的影响
数字通信系统中自适应均衡技术
核电站厂用电系统的保护定值校验
高速公路万兆环网建设探析
变压器相间过流保护不正确动作原因的探讨
数字通信系统中同步技术的研究
基于CAN的冗余控制及其在轨道交通门禁环网中的应用