高血压促进血管平滑肌细胞L型钙离子通道重塑的研究进展

2015-04-15 16:56曾国伟赵国政
解放军医学院学报 2015年2期
关键词:离子通道亚基平滑肌

曾国伟,刘 波,赵国政,石 菲

1解放军95072部队门诊部,广西南宁 530021;2解放军95890部队,湖北武汉 430030;3第四军医大学 航空航天生物动力学教研室,陕西西安 710032

高血压促进血管平滑肌细胞L型钙离子通道重塑的研究进展

曾国伟1,刘 波1,赵国政2,石 菲3

1解放军95072部队门诊部,广西南宁 530021;2解放军95890部队,湖北武汉 430030;3第四军医大学 航空航天生物动力学教研室,陕西西安 710032

血管平滑肌细胞(vascular smooth muscle cells,VSMCs)表达多种离子通道,包括各型钙离子通道,其中L型电压依赖型钙离子通道(L-type voltage-dependent calcium channels,LTCC)对于调节微小动脉血管张力发挥着重要作用。高血压时动脉血管张力异常增高,这种血管张力的变化又会影响LTCC的功能和表达。本篇综述将重点阐述VSMCs上研究较为充分的LTCC。首先,简要介绍LTCC在血管功能调节方面的作用;其次,讨论高血压时VSMCs上LTCC功能和表达变化的最新研究;最后,根据现有研究阐述LTCC作为高血压治疗靶点的应用前景。

高血压;血管平滑肌;L型电压依赖型钙离子通道;基因治疗

高血压是心血管和肾疾病发生、发展的头号危险因素,且原发性或特发性高血压占全部高血压人群的95%[1-3]。血压的调节受到两个重要的生理参数的影响:心输出量(cardiac output,CO)和总外周阻力(total peripheral resistance,TPR)。自主神经系统、肾素-血管紧张素系统和醛固酮等血管活性物质都可以通过影响CO和TPR调节血压,从而保证全身各个脏器的血流量[3-5]。在绝大多数高血压患者中,CO保持在正常范围,而TPR会由于小动脉的异常收缩而升高[6-7]。血管平滑肌细胞(vascular smooth muscle cells,VSMCs)上表达的钙离子通道,特别是L型电压依赖型的钙离子通道(L-type voltage-dependent calcium channels,LTCC)是调节微小血管直径的重要因素[8]。在内分泌因素或药理学因素作用下,VSMCs细胞膜发生超极化,导致LTCC的关闭,从而使得细胞内钙离子浓度降低,最终导致血管的舒张。研究表明,在高血压患者及高血压模型动物中发现VSMCs上LTCC发生重塑[9]。本文对VSMCs上LTCC的生理作用,高血压引起VSMCs上LTCC的变化,以及LTCC作为高血压治疗靶点的应用前景进行综述。

1 VSMCs上LTCC的生理作用

VSMCs在细胞膜和内质网上表达多种离子通道用以调节细胞内钙离子浓度、细胞膜静息电位和细胞的收缩性。LTCC是由孔道形成亚基α1和辅助亚基β、α2δ及γ组成的蛋白复合体。α1亚基由4个重复的结构域构成,而每个结构域又有6个穿膜片段。α1亚基具有电压敏感性和钙离子选择通透性,同时还可以被特异性的钙离子通道阻断剂阻断。辅助亚基β可以调节α1亚基的功能,从而影响整个通道的特性[10-14]。同样作为辅助亚基的α2δ和γ研究较少。Bannister等[15]发现,抑制α2δ亚基的表达能够引起高血压大鼠脑动脉的舒张,同时使得LTCC电流减弱,表明α2δ对于调节LTCC功能上的重要作用。

LTCC在去极化刺激时开放,使得钙离子内流增加,从而引发VSMCs的收缩和其他钙离子依赖的反应。当细胞内钙离子浓度持续增高时会引起钙离子依赖的失活,使得LTCC关闭[16-18]。此通道失活过程的发生限制了VSMCs内钙离子的浓度,从而阻止了VSMCs持续收缩的发生。钙离子结合蛋白(calmodulin,CaM)也是调节LTCC功能的重要一环。CaM的C末端和LTCC细胞质内的羧基端相连,启动钙离子依赖的失活。CaM的氨基末端能够和LTCC的羧基末端相连,调节LTCC的钙离子依赖的易化[19-21]。

除了钙离子外,支架蛋白和某些信号分子也能够调节LTCC[22]。在神经元中首先发现,支架蛋白A激酶锚定蛋白(A kinase anchoring protein,AKAP)可以结合在LTCC α1亚基的多个位点上[23]。在VSMCs中AKAP 150锚定在蛋白激酶C (protein kinase C,PKC)上,AKAP 150对LTCC的调节需要PKC的参与[24]。VSMCs上LTCC的活性受到许多机制的调控,以更好地控制细胞内钙离子的浓度,从而更好地调节血管的张力。

2 高血压时VSMCs的LTCC发生重塑

慢性高血压时血管腔内的压力增加,微小血管为适应压力的增加发生了生物学和结构性的变化。这种变化的基础病理生理过程复杂,包括血管重塑、内皮功能失调、平滑肌细胞肥大和细胞外基质成分和功能的改变[25-26]。持续性高血压下的这种适应性变化使得血管收缩反应增加而血管舒张反应降低,进而发生血管张力的增加[27-28]。高血压时,大脑、冠脉和肾小动脉血管张力的增加减弱了这些器官对于血压波动的调节能力,使得血管的血管脆性增加[29-30]。更糟糕的是,对于外周阻力贡献更大的肠系膜和骨骼肌血管网微小血管张力的增加会进一步加重全身血压。和脉管系统相似,持续性的高血压也会造成VSMCs上LTCC的重塑。

研究证实,VSMCs LTCC功能的上调是高血压的特点。同时在体实验也表明,VSMCs上LTCC的数量和血压高低存在正性相关[31-32]。例如,VSMCs上LTCC的电流密度和收缩压有线性关系[31]。有趣的是,在收缩压降低时,VSMCs上LTCC的电流密度也降低[32]。其他电生理研究表明,在新分离得到的VSMCs上LTCC的电流密度增加[33-34]。高血压时VSMCs上LTCC功能的上调主要是因为细胞膜上表达的LTCC数量增多。免疫印迹技术表明,与正常血压组相比,高血压组VSMCs上LTCC孔道形成亚基α1表达上调[35-36]。

虽然高血压时LTCC表达上调已经明确,但是使得LTCC孔道形成亚基α1表达增加的机制还不清楚。有研究表明,自发性高血压大鼠的肠系膜动脉LTCC转录水平表达量比正常对照组大鼠稍高一点,但蛋白水平要比正常对照组大鼠高出3.4倍以上[36]。同样,在缺氧诱导新生猪仔肺动脉高压研究中,LTCC蛋白水平的增高显著,而转录水平没有变化[35]。所以,转录后水平调控可能在LTCC表达上发挥着更为重要的作用。最近研究发现,miRNA是LTCC转录后水平的可能调节机制[37]。在上述研究中,miR-328可抑制缺氧诱导的肺动脉高压LTCC的表达,过表达miR-328能够降低小鼠右心室收缩压和肺动脉壁厚度[37]。根据目前研究得出结论,在高血压情况下有多因素参与到上调VSMCs上LTCC过程中。

3 VSMCs上LTCC是潜在的抗高血压治疗靶点

现有超过100种不同种类的药物在临床上用于降血压,但是只有不到1/3的患者能够将血压控制在正常水平[38-39]。造成治疗效果不好的主要原因是每天多次服药,甚至是服用多种药物,使得患者的依从性低[40-41]。

在药物治疗高血压方面,钙离子通道是主要的药物直接作用靶点。钙离子通道阻断剂(calcium channel blocker,CCB)在临床上用于治疗高血压已超过20年[42]。但由于使用禁忌证和不良反应,CCB在临床上的使用已不像之前那样广泛。CCB,尤其是非二氢吡啶类的钙离子通道阻断剂,由于存在房室结传导阻滞和抑制收缩等负性作用,在心衰患者中应慎用[43]。心动过速和水肿是包括二氢吡啶类CCB的常见不良反应。在以CCB抗高血压治疗时,常需联合其他种类的药物,通过协同效应以抵消每个药物组分的不良反应,从而达到目标血压。CCB引起的反射性心动过速在联合β受体阻断剂之后得到缓解。CCB联合血管紧张素受体阻断剂或者是血管紧张素转换酶抑制剂是常用的多药联合配方。

以降低VSMCs上LTCC异常表达为目的的基因治疗可能成为治疗高血压的新途径,它有着更好地靶向性。Marsh和Telemaque使用腺病毒运载基因治疗药物,降低LTCC功能单位α1亚基的表达[38,44]。有学者使用病毒载体运载shRNA到带有血管平滑肌特定启动子的细胞,成功地降低了LTCC的表达,而对心肌的LTCC没有影响[45]。虽然shRNA作用时效短,但是这些研究证明其可以靶向降低血管上异常表达的LTCC,而不影响到心脏LTCC。LTCC在调节血压方面的作用和作为潜在的抗高血压治疗靶点的研究为基因靶向治疗高血压打下了坚实的基础。

1 Kearney PM, Whelton M, Reynolds K, et al. Global burden of hypertension: analysis of worldwide data[J]. Lancet, 2005, 365(9455): 217-223.

2 Whelton PK. Epidemiology of hypertension[J]. Lancet, 1994, 344(8915):101-106.

3 Guyenet PG. The sympathetic control of blood pressure[J]. Nat Rev Neurosci, 2006, 7(5):335-346.

4 Saper CB. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation[J]. Annu Rev Neurosci, 2002, 25:433-469.

5 Blaustein MP. Endogenous ouabain: role in the pathogenesis of hypertension[J]. Kidney Int, 1996, 49(6):1748-1753.

6 Beevers G, Lip GY, O’brien E. ABC of hypertension - The pathophysiology of hypertension[J]. Br Med J, 2001, 322(7291):912-916.

7 Safar ME, Chau NP, Weiss YA, et al. Control of cardiac output in

essential hypertension[J]. Am J Cardiol, 1976, 38(3):332-336.

8 Nelson MT, Quayle JM. Physiological roles and properties of

potassium channels in arterial smooth muscle[J]. Am J Physiol,1995, 268(4 Pt 1):C799-C822.

9 Cox RH, Rusch NJ. New expression profiles of voltage-gated ion channels in arteries exposed to high blood pressure[J]. Microcirculation, 2002, 9(4): 243-257.

10 Sonkusare S, Palade PT, Marsh JD, et al. Vascular Calcium channels and high blood pressure: pathophysiology and therapeutic implications[J]. Vascul Pharmacol, 2006, 44(3): 131-142.

11 Birnbaumer L, Qin N, Olcese R, et al. Structures and functions of Calcium Channel beta subunits[J]. J Bioenerg Biomembr, 1998,30(4): 357-375.

12 Catterall WA. Structure and regulation of voltage-gated Ca2+ channels[J]. Annu Rev Cell Dev Biol, 2000, 16:521-555.

13 Singer D, Biel M, Lotan I, et al. The roles of the subunits in the function of the Calcium Channel[J]. Science, 1991, 253(527):1553-1557.

14 孙中洋,李东韬.成骨细胞钾、钙离子通道的研究进展[J].解放军医学院学报,2014,35(2):186-189.

15 Bannister JP, Adebiyi A, Zhao G, et al. Smooth muscle cell alpha2delta-1 subunits are essential for vasoregulation by CaV1.2 channels[J]. Circ Res, 2009, 105(10): 948-955.

16 Eckert R, Ewald D. Residual calcium ions depress activation of calcium-dependent current[J]. Science, 1982, 216(4547):730-733.

17 Ganitkevich VYa, Shuba MF, Smirnov SV. Calcium-dependent inactivation of potential-dependent calcium inward current in an isolated guinea-pig smooth muscle cell[J]. J Physiol, 1987, 392:431-449.

18 Morad M, Soldatov N. Calcium Channel inactivation: Possible role in signal transduction and Ca2+ signaling[J]. Cell Calcium, 2005,38(3/4): 223-231.

19 Peterson BZ, Demaria CD, Adelman JP, et al. Calmodulin is the Ca2+ sensor for Ca2+ -dependent inactivation of L-type Calcium channels[J]. Neuron, 1999, 22(3): 549-558.

20 Van Petegem F, Chatelain FC, Minor DL. Insights into voltage-gated Calcium Channel regulation from the structure of the Ca(V)1.2 IQ domain-Ca2+/calmodulin complex[J]. Nat Struct Mol Biol, 2005,12(12): 1108-1115.

21 Zühlke RD, Pitt GS, Deisseroth K, et al. Calmodulin supports both inactivation and facilitation of L-type Calcium channels[J]. Nature, 1999, 399(6732): 159-162.

22 Dai S, Hall DD, Hell JW. Supramolecular assemblies and localized regulation of voltage-gated ion channels[J]. Physiol Rev, 2009,89(2): 411-452.

23 Gray PC, Johnson BD, Westenbroek RE, et al. Primary structure and function of an A kinase anchoring protein associated with calcium channels[J]. Neuron, 1998, 20(5):1017-1026.

24 Navedo MF, Nieves-Cintron M, Amberg GC, et al. AKAP150 is required for stuttering persistent Ca2+ sparklets and angiotensin II-induced hypertension[J]. Circ Res, 2008, 102(2): e1-e11.

25 Mehta PK, Griendling KK. Angiotensin II cell signaling:physiological and pathological effects in the cardiovascular system[J]. Am J Physiol Cell Physiol, 2007, 292(1): C82-C97.

26 Touyz RM. Intracellular mechanisms involved in vascular remodelling of resistance arteries in hypertension: role of angiotensin II[J]. Exp Physiol, 2005, 90(4): 449-455.

27 Baumbach GL, Heistad DD. Remodeling of cerebral arterioles in chronic hypertension[J]. Hypertension, 1989, 13(6 Pt 2):968-972.

28 Heistad DD, Mayhan WG, Coyle P, et al. Impaired dilatation of cerebral arterioles in chronic hypertension[J]. Blood Vessels,1990, 27(2/5): 258-262.

29 Heistad DD. Protection of the blood-brain barrier during acute and chronic hypertension[J]. Fed Proc, 1984, 43(2):205-209.

30 Hayashi K, Epstein M, Saruta T. Altered myogenic responsiveness of the renal microvasculature in experimental hypertension[J]. J Hypertens, 1996, 14(12):1387-1401.

31 Lozinskaya IM, Cox RH. Effects of age on Ca2+ currents in small mesenteric artery myocytes from Wistar-Kyoto and spontaneously hypertensive rats[J]. Hypertension, 1997, 29(6): 1329-1336.

32 Cox RH, Lozinskaya I, Matsuda K, et al. Ramipril treatment alters Ca(2+) and K(+) channels in small mesenteric arteries from Wistar-Kyoto and spontaneously hypertensive rats[J]. Am J Hypertens, 2002, 15(10 Pt 1): 879-890.

33 Simard JM, Li X, Tewari K. Increase in functional Ca2+ channels in cerebral smooth muscle with renal hypertension[J]. Circ Res,1998, 82(12):1330-1337.

34 Pesic A, Madden JA, Pesic M, et al. High blood pressure upregulates arterial L-type Ca2+ channels - Is membrane depolarization the signal?[J]. Circ Res, 2004, 94(10): e97-e104.

35 Hirenallur-S DK, Haworth ST, Leming JT, et al. Upregulation of vascular Calcium channels in neonatal piglets with hypoxia-induced pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol,2008, 295(5): L915-L924.

36 Pratt PF, Bonnet S, Ludwig LM, et al. Upregulation of L-type Ca2+ channels in mesenteric and skeletal arteries of SHR[J]. Hypertension, 2002, 40(2): 214-219.

37 Guo L, Qiu Z, Wei L, et al. The microRNA-328 regulates hypoxic pulmonary hypertension by targeting at insulin growth factor 1 receptor and L-type calcium channel-α1C [J]. Hypertension, 2012, 59(5):1006-1013.

38 Marsh JD, Telemaque S, Rhee SW, et al. Delivery of ion channel genes to treat cardiovascular diseases[J]. Trans Am Clin Climatol Assoc, 2008, 119:171-182.

39 李丹丹,董蔚,陈韵岱.阿折地平用于治疗原发性轻中度高血压的临床试验[J].解放军医学院学报,2013(9):977-980.

40 Burnier M. Medication adherence and persistence as the cornerstone of effective anti hypertensive therapy[J]. Am J Hypertens, 2006,19(11): 1190-1196.

41 Frishman WH. Importance of medication adherence in cardiovascular disease and the value of once-daily treatment regimens[J]. Cardiol Rev, 2007, 15(5):257-263.

42 Manolio TA, Cutler JA, Furberg CD, et al. Trends in pharmacologic management of hypertension in the United States[J]. Arch Intern Med, 1995, 155(8): 829-837.

43 Eisenberg MJ, Brox A, Bestawros AN. Calcium channel blockers:an update[J]. Am J Med, 2004, 116(1):35-43.

44 Télémaque S, Sonkusare S, Grain T, et al. Design of mutant beta2 subunits as decoy molecules to reduce the expression of functional Ca2+ channels in cardiac cells[J]. J Pharmacol Exp Ther, 2008,325(1): 37-46.

45 Rhee SW, Stimers JR, Wang W, et al. Vascular smooth musclespecific knockdown of the noncardiac form of the L-type calcium channel by microRNA-based short hairpin RNA as a potential antihypertensive therapy[J]. J Pharmacol Exp Ther, 2009, 329(2):775-782.

L-type calcium channels remodeling in vascular smooth muscle cell promoted by hypertension

ZENG Guowei1, LIU Bo1, ZHAO Guozheng2, SHI Fei31Outpatient Department, Chinese PLA 95072 Unit, Nanning 530021, Guangxi Province, China;2Chinese PLA 95890 Unit, Wuhan 430030, Hubei Province, China;3Teaching and Research Section of Aviation and Aerospace Biomechanics, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China

LIU Bo. Email: 729518279@qq.com

Vascular smooth muscle cells (VSMCs) can express different types of ion channels, including various calcium channels. The L-type voltage-dependent calcium channels (LTCC) on the plasma membrane of VSMCs plays a pivotal role in modulating the vascular tone of small arteries and arterioles. The abnormally-elevated arterial tone observed in hypertension thus points to an aberrant expression and function of LTCC in the VSMCs. In this short review, the LTCC in VSMCs are focused. First, a brief overview on the physiological role of vascular LTCC in regulating arterial tone is provided, then the current understanding of the expression changes and regulation of LTCC in the vasculature during hypertension are discussed. At last, based on available proof-of-concept studies, the potential therapeutic approaches targeting LTCC in order to restore blood pressure to normotensive levels are described.

hypertension; vascular smooth muscle; L-type voltage-dependent calcium channels; gene therapy

R 329.25

A

2095-5227(2015)02-0190-03

10.3969/j.issn.2095-5227.2015.02.027

时间:2014-10-15 09:36

http://www.cnki.net/kcms/detail/11.3275.R.20141015.0936.001.html

2014-08-08

国家自然科学基金项目(81301681)

Supported by the National Natural Science Foundation of China (81301681)

曾国伟,男,学士,主治医师。研究方向:老年病学。Email: 2792586281@qq.com

刘波,男,学士,医师。Email: 729518279@qq.com

猜你喜欢
离子通道亚基平滑肌
电压门控离子通道参与紫杉醇所致周围神经病变的研究进展
蝎毒肽作为Kv1.3离子通道阻滞剂研究进展
心脏钠通道β2亚基转运和功能分析
原发性肾上腺平滑肌肉瘤1例
喉血管平滑肌瘤一例
肠系膜巨大平滑肌瘤1例并文献回顾
胰岛素通过mTORC2/SGK1途径上调肺泡上皮钠通道α亚基的作用机制
咽旁巨大平滑肌肉瘤一例MRI表现
疼痛和离子通道
小RNA干扰蛋白酶体亚基α7抑制K562细胞增殖