低氧诱导因子-1α和反义低氧诱导因子-1α的研究进展

2016-03-10 10:42陈冬茹吴莉萍
国际口腔医学杂志 2016年5期
关键词:反义低氧编码

陈冬茹 吴莉萍

中山大学光华口腔医学院·附属口腔医院正畸科;广东省口腔医学重点实验室 广州 510055

低氧诱导因子-1α和反义低氧诱导因子-1α的研究进展

陈冬茹吴莉萍

中山大学光华口腔医学院·附属口腔医院正畸科;广东省口腔医学重点实验室广州 510055

低氧诱导因子(HIF)-1α是细胞感受氧体积分数高低并作出生物反应的关键性分子,具有促进血管生成、调节pH、诱导自吞噬和程序性细胞死亡以及促进间质干细胞自我更新及分化作用。HIF-1α还参与正畸牙移动及牙周炎过程中牙周组织的修复与改建,促使细胞适应低氧环境,完成牙槽骨成骨与吸收过程。反义低氧诱导因子(aHIF)-1α是一种自然反义转录因子,对HIF-1α具有反义调控作用;而HIF-1α对aHIF-1α亦可能存在反馈调节机制。HIF-1α表达于大多数常见的癌组织及其转移灶中,是肿瘤的一个标志性因子,越来越多的研究将其作为治疗各类肿瘤的靶点。研究并明确HIF-1α与aHIF-1α的作用及其精确的调控机制,可为寻找治疗各种疾病的靶点和调控生理过程提供新的契机。

低氧诱导因子;反义低氧诱导因子;长链非编码RNA;调控机制

This study was supported by the Natural Science Foundation of Guangdong Province(2015A030313083).

[Abstract]Hypoxiainducible factor(HIF)-1α is an important molecule that responds to hypoxia,promotes angiogenesis,modulates pH,induces cell autophagy or programmed cell death,and facilitates the differentiation and self-renewal of mesenchymal stem cells. HIF-1α is also involved in reparation and remolding of periodontal tissues as well as in helping cells to adapt to hypoxia and promote the formation and resorption of the alveolar bone. Antisense hypoxiainducible factor(aHIF)-1α is a natural antisense transcript that negatively controls HIF-1α. HIF-1α may have a feedback effect on aHIF-1α. HIF-1α is an important biomarker expressed in primary and metastasis sites in several types of for cancers. HIF-1α is regarded as target for treating cancers. Understanding the functions and regulatory mechanisms of HIF-1α and aHIF-1α provides new opportunity to discover targets for treatment of different diseases and modulate physiological processes.

[Key words]hypoxia inducible factor;antisense hypoxia inducible factor;long non-coding RNA;regulatory mechanism

低氧诱导因子(hypoxia inducible factor,HIF)-1α是细胞感受氧体积分数高低并作出生物反应的关键分子,参与低氧状态下多种生命调节过程。鉴于HIF-1α的重要性,其表达调控也备受关注。反义低氧诱导因子(antisense hypoxia inducible factor,aHIF)-1α是一种自然反义转录因子(natural antisense transcript,NAT),属于长链非编码RNA(long non-coding RNA,LncRNA),对HIF-1α具有反义调控作用;同时,HIF-1α对aHIF-1α亦存在反馈调节机制。明确HIF-1α与aHIF-1α的功能及其调控机制,不仅可以对疾病治疗提供新的思路,而且可以进一步了解生命的精确调控机制。

1 HIF-1α的功能和主要调节途径

Semenza等[1]发现在低氧的肝癌细胞株中存在着一种蛋白质可特异性地结合于促红细胞生成蛋白(erythropoietin,EPO)基因启动子区域的寡核苷酸序列他们将其被命名为HIF-1。在低氧条件下,HIF-1广泛存在于哺乳动物与人体细胞中。HIF-1是由α和β两个亚基组成的异二聚体,HIF-1α是主要的氧调节亚基,在常氧状态下易经遍在蛋白(俗称泛素)酶体途径降解,表达水平较低;而HIF-1β在常氧和低氧状态下都稳定表达,不受氧体积分数的影响[2]。HIF-1α转位到细胞核内与HIF-1β形成异二聚体后,可结合到一些特定基因的低氧反应元件(hypoxia response element,HRE)部位,激活其下游多种低氧反应性因子的表达,例如EPO、血管内皮生长因子(vascular endothelial growth factor,VEGF)、核心结合因子-α1(core binding factor α1,CBFA1)、碱性磷酸酶(alkaline phosphatase,AKP)、地诺前列酮(旧称前列腺素E2)、微小RNA(microRNA,miRNA A)等[3-6],从而维持氧稳态,使细胞避免或适应低氧环境。

HIF-1α具有促进血管生成、能量代谢、pH调节、诱导自吞噬和程序性细胞死亡作用[3]。此外,HIF-1α对间质干细胞(mesenchymal stem cell,MSC)自我更新及分化有调节作用。Wagegg等[7]发现,低氧可上调人MSC中HIF-1α及其下游因子的表达,促进其成骨向分化,抑制其成脂向分化;抑制HIF-1α的表达则促进人MSC成脂向分化。Zhou等[8]亦发现,低氧通过细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)1/2和P38途径促进人MSC成骨分化及血管生成,HIF-1α和AKP的表达量明星升高。CBFA1也可稳定HIF-1α,进一步增强低氧促成骨分化作用[9];然而,HIF-1α可启动下游因子扭曲基因(twist),结合E-盒位点,下调CBFA1,抑制低氧下人MSC成骨分化[10]。Park等[11]则发现HIF-1α稳定表达,可提高MSC自我更新能力并保持其未分化状态。可见,低氧引起HIF-1α表达升高,但其促MSC分化作用仍存在争议。

HIF-1α也参与正畸牙移动及牙周炎过程中牙周组织的修复与改建。陈彬等[12]发现,在大鼠正畸牙移动过程中,张力侧和压力侧牙周膜血供减少,氧水平下降,诱导HIF-1α高表达,促使细胞适应低氧环境,增加存活率,完成牙槽骨成骨与吸收的过程,HIF-1α可能是促骨生成及吸收的双效因子。另外在人牙周膜干细胞中,低氧激活ERK-促丝裂原激活蛋白激酶(mitogen-activated protein kinase,MAPK)和P38MAPK信号级联信号转导通路的信号转导,刺激CBFA1和成骨细胞特异性转录因子(osterix,Osx)表达并上调AKP 和VEGF,促进骨生成及血管生成,其中ERK1/2磷酸化较缓慢和持久,而P38信号以相对较快和瞬间形式被激活[8,13]。对于牙周炎的牙周膜细胞模型,HIF-1α可增强牙龈卟啉单胞菌的脂多糖诱导促炎因子的生成,加快牙周组织的破坏[14]。

HIF-1α表达受低氧体积分数、时间和细胞类型的影响。HIF-1α降解依赖于遍在蛋白-蛋白连接酶(ubiquitin-protein ligating enzyme,E3)复合体,包括VHL(von Hippel-Lidau disease gene)、延伸蛋白B及C、cullin-2及位于HIF-1α上的氧依赖性降解区域(ODD)等[2-3]。此外,一些生长因子、炎症因子、癌基因等可通过磷脂酰肌醇-3-激酶/蛋白激酶B及ERK信号转导通路的信号转导,调节HIF-1α蛋白的稳定性[15-17]。可见以往对HIF-1α基因表达调控的研究多集中在翻译和翻译后水平,较少针对转录水平的研究。Thrash-Bingham等[18]则发现长期低氧,HIF-1α基因表达下降,主要由自然aHIF-1α调控HIF-1α mRNA水平所致。

2 aHIF-1α基因的结构和特征

aHIF-1α可调控HIF-1α mRNA,aHIF-1α起源于HIF-1α基因的3'端,即3'aHIF-1α。Baranello等[19]于HIF-1α基因的5'端发现的一种新的反义HIF-1α转录子,即5'aHIF-1α,亦可能对HIF-1α有反义调控作用。NAT通常指自然情况下生物体内生成的反义RNA,与其互补RNA通过碱基互补配对,引起靶基因的降解或翻译抑制。它们具有一些共同特征,大多数NAT来源于与正义转录子相同的基因组位点,由编码正义转录子的相对链编码,称为顺式编码NAT(cis-NAT),cis-NAT与靶基因序列可完全互补,而来源于与靶基因不同基因组位点的NAT则称为反式编码NAT(trans-NAT)。多数NAT不编码蛋白质,通过与正义因子杂交而起调控作用,但也可能通过RNA剪接、RNA编辑、转录干扰等途径起作用[20]。在诸多的RNA中皆存在NAT,其中包括HIF-1α、乙酰胆碱酯酶[21]和红细胞生成蛋白受体[20]等。

3'aHIF-1α和5'aHIF-1α基因的转录长度均大于200 nt,属于LncRNA。LncRNA没有或很少有蛋白质编码功能,在哺乳动物其基因组普遍被转录[22-23]。依据它们距离蛋白质编码基因的距离可将其分为顺式反义型、双向型、重叠型和内含子型等LncRNA[24-25]。LncRNA参与表观遗传、转录以及转录后调控等多种重要的调控过程,通过基因印记、染色质重塑、调节细胞周期、剪接过程、mRNA失活及转录后调节等机制完成其生物学作用[22]。3'aHIF-1α因发现较早,研究也相对较多。3'aHIF-1α RNA大小为1.8~1.9 kb,与HIF-1α mRNA 3' 非翻译区严格互补,互补区约1 027 bp,在此互补区尚有一个未命名的区域,富含AU碱基,可能影响HIF-1α mRNA的稳定,加快HIF-1α mRNA的降解[26]。5'aHIF-1α具有5'帽结构和3'多聚A尾,而3'aHIF-1α没有这两种结构[27]。3'aHIF-1α在人体的大多数组织中都有表达,尤其是在胎儿组织中表达量高于成人组织[26]。3'aHIF-1α在啮齿类动物间具有保守型,大鼠及小鼠的3'aHIF-1α 的3'端与HIF-1α互补的特点与人类相似,而5'端在种属间存在差异[28]。

3 aHIF-1α与HIF-1α关系

aHIF-1α作为HIF-1α的自然反义转录因子,对HIF-1α起关键性的负调节作用。在常氧状态下,3'aHIF-1α、HIF-1α表达均较低。3'aHIF-1α在巨噬细胞中低氧24 h内表达持续升高,当恢复到正常氧体积分数时表达量迅速下降;采用腺病毒转染方式使3'aHIF-1α基因高表达,低氧条件下HIF-1α mRNA下调,而常氧条件下HIF-1α mRNA表达无明显下调,可能因为3'aHIF-1α蛋白在常氧下被迅速降解所致[29]。3'aHIF-1α与HIF-1α的表达变化具有组织特异性,3'aHIF-1α可能与组织氧体积分数关系更密切,而HIF-1α mRNA的表达可能更多地与组织对糖的需求量有关[28]。Bertozzi等[27]运用RNA荧光原位杂交技术发现,HIF-1α mRNA位于核内和细胞质内,5'aHIF-1α和3'aHIF-1α仅位于核内,5'aHIF-1α和核孔复合体Nup62共聚集于核膜周围,可能具有调控膜转运功能并影响HIF-1α表达。张学翠等[30]发现在低氧的人成骨细胞MG63中有5'aHIF-1α表达,其表达量随着氧体积分数的减少而逐渐下降;与5'aHIF-1α相反,HIF-1α蛋白则随着氧体积分数的下降而逐渐升高。由于LncRNA可识别互补序列,对转录后mRNA的剪接、编辑、翻译和降解过程等均有调节作用,反义LncRNA能与mRNA的关键顺式序列形成互补的双链,干预该段序列的剪接并进一步影响该序列有效翻译和蛋白质表达[31];因此,推测5'aHIF-1α可能在转录或转录后抑制MG63细胞中HIF-1α的表达,且随低氧程度的增加其抑制作用逐渐降低。

研究显示,HIF-1α也可调控3'aHIF-1α的表达。短期低氧,3'aHIF-1α及HIF-1α表达均较高;长期低氧,3'aHIF-1α表达仍较高,此时HIF-1α mRNA表达降低,进而影响HIF-1α蛋白,最终恢复到基本水平[28-29]。人类的3'aHIF-1α基因启动子区域可能存在HRE序列,此序列为HIF-1α蛋白的结合位点,故推断3'aHIF-1α也是HIF-1的下游反应因子,存在反馈调节作用[26]。在低氧状态下,HIF-1可调节3'aHIF-1α,使其表达升高,因而长期低氧高表达的3'aHIF-1α可下调HIF-1α的表达。在低氧条件下,HIF-1α蛋白表达在HIF-1β基因敲除的细胞中上调,但不能与HIF-1β组合成功能性HIF-1,此时3'aHIF-1α表达不上调,支持3'aHIF-1α可能是功能性HIF-1α下游因子[32]。

在不同的刺激作用下,5'aHIF-1α与3'aHIF-1α反应不同;在肿瘤抑制剂喜树碱作用的HCT116细胞中,HIF-1α mRNA表达降低,5'aHIF-1α和3' aHIF-1α表达均上调;然而,低氧模拟剂去铁胺只能上调3'aHIF-1α的表达。此外,5'aHIF-1α与3' aHIF-1α的表达还具有细胞特异性,海拉细胞中,5'aHIF-1α表达上调,而3'aHIF-1α表达不上调[27]。他们推测,这两种aHIF-1α具有不同的调控作用。

4 HIF-1α和aHIF-1α与肿瘤疾病

HIF-1α蛋白过表达存在于大多数常见癌组织及其转移灶中,成为肿瘤的一个标志性因子,如胰腺癌、肝癌、乳腺癌和头颈部鳞状细胞癌[33-34]等。迄今,越来越多的研究将HIF-lα作为治疗各类肿瘤的靶点。HIF-1α在其他疾病,如牙周炎、骨折、心肌梗死和脑梗死[35-36]等中均有明显的变化,提示HIF-1α在这些疾病中发挥着重要的作用。利用上调HIF-1α活性治疗局部低血低氧疾病的研究也在进行中。

关于aHIF-1α与疾病方面的研究主要集中在肿瘤领域,aHIF-1α的表达量可能与肿瘤预后有关。有研究[18]显示,aHIF在非乳头状肾癌中呈高表达状态。在嗜铬细胞瘤中,3'aHIF-1α表达越高,肿瘤转移的风险越大[37]。在乳腺癌细胞中,3'aHIF-1α高表达是其标志性危险因素,较HIF-1α更具有意义。5'aHIF-1α与3'aHIF-1α则均在肾癌中有表达[27]。在慢性心脏衰竭性疾病中,3'aHIF-1α表达上调[37]。Neckers[32]认为,3'aHIF-1α可能是HIF-1α 与VHL之间重要的联系因子。VHL是一种肿瘤抑制基因,也是影响HIF-1α蛋白稳定的关键调节因子,编码pVHL蛋白,主要是通过调节HIF-1α mRNA的产生等途径抑制肿瘤发生。想常氧条件下,pVHL可抑制HIF-1α表达;在低氧条件下,在缺少功能性pVHL的细胞中,3'aHIF-1α不作出反应。Neckers[32]推测,3'aHIF-1α可能是对VHL反应的基因。

[1]Semenza GL,Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation[J]. Mol Cell Biol,1992,12(12):5447-5454.

[2]Hellwig-Bürgel T,Stiehl DP,Wagner AE,et al. Review: hypoxia-inducible factor-1(HIF-1): a novel transcription factor in immune reactions[J]. J Interferon Cytokine Res,2005,25(6):297-310.

[3]Wang XJ,Si LB. Advances on hypoxia inducible factor-1[J]. Chin Med J,2013,126(18):3567-3571.

[4]Jian C,Li C,Ren Y,et al. Hypoxia augments lipopolysaccharide-induced cytokine expression in periodontal ligament cells[J]. Inflammation,2014,37 (5):1413-1423.

[5]Nallamshetty S,Chan SY,Loscalzo J. Hypoxia: a master regulator of microRNA biogenesis and activity[J]. Free Radic Biol Med,2013,64:20-30.

[6]Mace TA,Collins AL,Wojcik SE,et al. Hypoxia induces the overexpression of microRNA-21 in pancreatic cancer cells[J]. J Surg Res,2013,184(2):855-860.

[7]Wagegg M,Gaber T,Lohanatha FL,et al. Hypoxia promotes osteogenesis but suppresses adipogenesis of human mesenchymal stromal cells in a hypoxiainducible factor-1 dependent manner[J]. PLoS ONE,2012,7(9):e46483.

[8]Zhou Y,Guan X,Wang H,et al. Hypoxia induces osteogenic/angiogenic responses of bone marrowderived mesenchymal stromal cells seeded on bonederived scaffolds via ERK1/2 and p38 pathways[J]. Biotechnol Bioeng,2013,110(6):1794-1804.

[9]Lee SH,Che X,Jeong JH,et al. Runx2 protein stabilizes hypoxia-inducible factor-1α through competition with von Hippel-Lindau protein(pVHL)and stimulates angiogenesis in growth plate hypertrophic chondrocytes[J]. J Biol Chem,2012,287 (18):14760-14771.

[10]Yang DC,Yang MH,Tsai CC,et al. Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST [J]. PLoS ONE,2011,6(9):e23965.

[11]Park IH,Kim KH,Choi HK,et al. Constitutive stabilization of hypoxia-inducible factor alpha selectively promotes the self-renewal of mesenchymal progenitors and maintains mesenchymal stromal cells in an undifferentiated state[J]. Exp Mol Med,2013,45:e44.

[12]陈彬,李琥,穆超,等. 大鼠正畸牙移动中HIF-1α的表达[J]. 口腔生物医学,2011,2(2):78-81. Chen B,Li H,Mu C,et al. Expression of hif-1α in periodontal tissue during orthodontic tooth movement[J]. Oral Biomed,2011,2(2):78-81.

[13]Wu Y,Yang Y,Yang P,et al. The osteogenic differentiation of PDLSCs is mediated through MEK/ ERK and p38 MAPK signalling under hypoxia[J]. Arch Oral Biol,2013,58(10):1357-1368.

[14]Kim YS,Shin SI,Kang KL,et al. Nicotine and lipopolysaccharide stimulate the production of MMPs and prostaglandin E2by hypoxia-inducible factor-1α up-regulation in human periodontal ligament cells[J]. J Periodont Res,2012,47(6):719-728.

[15]Zeng D,Wang J,Kong P,et al. Ginsenoside Rg3 inhibits HIF-1α and VEGF expression in patient with acute leukemia via inhibiting the activation of PI3K/ Akt and ERK1/2 pathways[J]. Int J Clin Exp Pathol,2014,7(5):2172-2178.

[16]柳永蕾,宋现让. 乏氧诱导因子结构、表达及调控[J]. 中国生物化学与分子生物学报,2006,22(1):1-8. Liu YL,Song XR. Structure,expression and regulation of hypoxia-inducible factor[J]. Chin J Biochem Mol Biol,2006,22(1):1-8.

[17]Lee SH,Jee JG,Bae JS,et al. A group of novel HIF-1α inhibitors,glyceollins,blocks HIF-1α synthesis and decreases its stability via inhibition of the PI3K/ AKT/mTOR pathway and Hsp90 binding[J]. J Cell Physiol,2015,230(4):853-862.

[18]Thrash-Bingham CA,Tartof KD. aHIF: a natural antisense transcript overexpressed in human renal cancer and during hypoxia[J]. J Natl Cancer Inst,1999,91(2):143-151.

[19]Baranello L,Bertozzi D,Fogli MV,et al. DNA topoisomerase I inhibition by camptothecin induces escape of RNA polymerase Ⅱ from promoter-proximal pause site,antisense transcription and histone acetylation at the human HIF-1alpha gene locus[J]. Nucleic Acids Res,2010,38(1):159-171.

[20]Werner A,Sayer JA. Naturally occurring antisense RNA: function and mechanisms of action[J]. Curr Opin Nephrol Hypertens,2009,18(4):343-349.

[21]Xi Q,Gao N,Zhang X,et al. A natural antisense transcript regulates acetylcholinesterase gene expression via epigenetic modification in hepatocellular carcinoma[J]. Int J Biochem Cell Biol,2014,55:242-251.

[22]Gibb EA,Brown CJ,Lam WL. The functional role of long non-coding RNA in human carcinomas[J]. Mol Cancer,2011,10(1):38.

[23]Gallagher PG. Long noncoding RNAs in erythropoiesis[J]. Blood,2014,123(4):465-466.

[24]Mercer TR,Dinger ME,Mattick JS. Long non-coding RNAs: insights into functions[J]. Nat Rev Genet,2009,10(3):155-159.

[25]Gibb EA,Vucic EA,Enfield KS,et al. Human cancer long non-coding RNA transcriptomes[J]. PLoS ONE,2011,6(10):e25915.

[26]Rossignol F,Vaché C,Clottes E. Natural antisense transcripts of hypoxia-inducible factor 1alpha are detected in different normal and tumour human tissues[J]. Gene,2002,299(1/2):135-140.

[27]Bertozzi D,Iurlaro R,Sordet O,et al. Characterization of novel antisense HIF-1α transcripts in human cancers[J]. Cell Cycle,2011,10(18):3189-3197.

[28]Rossignol F,de Laplanche E,Mounier R,et al. Natural antisense transcripts of HIF-1alpha are conserved in rodents[J]. Gene,2004,339:121-130.

[29]Poitz DM,Augstein A,Hesse K,et al. Regulation of the HIF-system in human macrophages—differential regulation of HIF-α subunits under sustained hypoxia[J]. Mol Immunol,2014,57(2):226-235.

[30]张学翠,金小岚,郎红梅,等. 低氧条件下人成骨细胞长链非编码RNA5'aHIF-1α的表达[J]. 中华骨质疏松和骨矿盐疾病杂志,2013,6(3):246-250. Zhang XC,Jin XL,Lang HM,et al. Expression of long non-coding rna(5'aHIF-1α) in human osteoblast cells under hypoxic conditions[J]. Chin J Osteoporosis Bone Mineral Res,2013,6(3):246-250.

[31]Wilusz JE,Sunwoo H,Spector DL. Long noncoding RNAs: functional surprises from the RNA world[J]. Genes Dev,2009,23(13):1494-1504.

[32]Neckers LM. aHIF: the missing link between HIF-1 and VHL[J]. J Natl Cancer Inst,1999,91(2):106-107.

[33]Huang GW,Yang LY,Lu WQ. Expression of hypoxia-inducible factor 1alpha and vascular endothelial growth factor in hepatocellular carcinoma:impact on neovascularization and survival[J]. World J Gastroenterol,2005,11(11):1705-1708.

[34]Liu ZJ,Semenza GL,Zhang HF. Hypoxia-inducible factor 1 and breast cancer metastasis[J]. J Zhejiang Univ Sci B,2015,16(1):32-43.

[35]Lee JY,Hirota SA,Glover LE,et al. Effects of nitric oxide and reactive oxygen species on HIF-1α stabilization following clostridium difficile toxin exposure of the Caco-2 epithelial cell line[J]. Cell Physiol Biochem,2013,32(2):417-430.

[36]Li L,Yin X,Ma N,et al. Desferrioxamine regulates HIF-1 alpha expression in neonatal rat brain after hypoxia-ischemia[J]. Am J Transl Res,2014,6(4):377-383.

[37]Span PN,Rao JU,Oude Ophuis SB,et al. Overexpression of the natural antisense hypoxia-inducible factor-1alpha transcript is associated with malignant pheochromocytoma/paraganglioma[J]. Endocr Relat Cancer,2011,18(3):323-331.

(本文采编王晴)

Research progress on hypoxia inducible factor-1α and antisense hypoxia inducible factor-1α

Chen Dongru,Wu Liping. (Dept. of Orthodontics,Guanghua School of Stomatology,Hospital of Stomatology,Sun Yat-sen University;Guangdong Provincial Key Laboratory of Stomatology,Guangzhou 510055,China)

Q 51

A

10.7518/gjkq.2016.05.021

2015-12-10;[修回日期]2016-05-24

广东省自然科学基金(2015A030313083)

陈冬茹,硕士,Email:979254235@qq.com

吴莉萍,副教授,博士,Email:wuliping218@gmail.com

猜你喜欢
反义低氧编码
认识反义词
反义疑问句小练
间歇性低氧干预对脑缺血大鼠神经功能恢复的影响
基于SAR-SIFT和快速稀疏编码的合成孔径雷达图像配准
《全元诗》未编码疑难字考辨十五则
子带编码在图像压缩编码中的应用
Genome and healthcare
这山望着那山高
Wnt/β-catenin信号通路在低氧促进hBMSCs体外增殖中的作用
小G蛋白RhoB在低氧激活巨噬细胞及功能调节中的作用*