耐热β-半乳糖苷酶的研究进展

2012-11-15 02:06董艺凝陈海琴刘小鸣
食品工业科技 2012年1期
关键词:乳糖酶水解酶糖苷

董艺凝,陈海琴,刘小鸣,张 灏,陈 卫

(江南大学食品学院,江苏无锡214122)

耐热β-半乳糖苷酶的研究进展

董艺凝,陈海琴,刘小鸣,张 灏,陈 卫*

(江南大学食品学院,江苏无锡214122)

耐热-半乳糖苷酶因其具有较高的作用温度和良好的热稳定性,在乳制品生产领域展现出广阔的应用前景,其理论及应用价值正逐渐成为近年来的研究热点。从耐热-半乳糖苷酶的来源、酶学性质、结构特征、催化机制及定向进化研究方面综述了耐热-半乳糖苷酶的研究进展,并对其应用及研究前景进行了展望。

耐热-半乳糖苷酶,结构特征,催化机制,定向进化

β-半乳糖苷酶(EC 3.2.1.23,俗称乳糖酶)可催化半乳糖苷键(β-D-galactosyl bond)的水解。β-半乳糖苷酶在乳制品工业中有两项主要的应用,一是水解乳中的乳糖,二是用于功能性食品中低聚半乳糖(galacto-oligosaccharides)的合成。耐热β-半乳糖苷酶没有严格的定义,它是相对于常温微生物来源的β-半乳糖苷酶界定的,一般把最适温度在50℃以上的β-半乳糖苷酶称作耐热β-半乳糖苷酶。近年来,耐热β-半乳糖苷酶在乳制品生产中具有显著的优势,并逐渐引起人们的研究兴趣。本文主要综述了耐热β-半乳糖苷酶的研究现状,以期为耐热β-半乳糖苷酶研究发展开拓思路。

1 耐热β-半乳糖苷酶的来源及酶学性质

耐热β-半乳糖苷酶主要来源于一些高温菌和中温细菌,如耐热嫌气菌、栖热菌、嗜热菌和古细菌等。真菌中霉菌乳糖酶也具有较高作用温度,但酵母菌中未见报道。表1列举了几种不同微生物来源的耐热β-半乳糖苷酶及其酶学性质。其中,嗜热细菌是耐热β-半乳糖苷酶的一个重要来源,嗜热细菌生长温度一般在55~65℃,酶最适温度55~70℃。如嗜热链球菌[1]、嗜热脂肪芽孢杆菌[2]等。

研究报道表明许多栖热菌(Thermus)也能编码热稳定性的β-半乳糖苷酶。1972年,Ulrich等[14]首次对栖热菌(Thermus sp.T2)来源的耐热β-半乳糖苷酶的酶学性质进行了表征,该酶最适作用温度80℃,最适pH5.0;中性环境可保持良好的稳定性,pH7.0,70℃加热10min可保持100%酶活。1998年,Vian等[15]将Thermus sp.T2来源的耐热β-半乳糖苷酶在大肠杆菌中进行重组表达,重组酶的耐热性能保持良好,70℃加热1h酶活保留率为50%。而Ohtsu等[3]从日本Atagawa温泉中分离到一种栖热菌(Thermus sp.A4),其耐热β-半乳糖苷酶具有极好的热稳定性,可在70℃加热20h保持酶活不受损失。Dion等[16]从Thermus thermophilus HB27中克隆并表达了一种耐热β-半乳糖苷酶,可以催化β-D-半乳糖苷、β-D-葡萄糖苷和β-D-果糖苷衍生物水解;最适温度88℃,中性条件下,pH7.0,80℃加热10min可保持100%酶活。

另外,来自Caldicellulosiruptor saccharolyticus,Sterigmatomyceselviae,Thermotoga maritime以 及Thermus aquaticu的耐热β-半乳糖苷酶的最适作用温度均可以达到80℃以上。沃氏火球菌(Pyrococcus woesei)最适作用温度93℃,最适pH5.4,85℃和93℃加热4h酶活分别保留89%和85%[17-18]。矿泉古生菌中硫磺矿硫化叶菌(Sulfolobus solfataricus)也能编码一种极耐热的β-半乳糖苷酶,最适温度高于90℃[19-20]。另外,热产硫磺梭菌(Clostridium thermosulfurogenes EM1)β-半乳糖苷酶,最适pH7.0,在70℃长时间加热酶活仍稳定[21]。

表1 不同微生物来源的耐热-半乳糖苷酶及其酶学性质Table 1 Thermos table β-galactosidases from different microbial sources and its enzymatic properties

2 耐热β-半乳糖苷酶的结构特征及催化机制

2.1 耐热β-半乳糖苷酶的结构特征

水解酶基于氨基酸序列相似性被分类为不同家族,到目前为止,共有115个糖苷水解酶家族(Glycoside Hydrolase Family)分属于14个超家族(Super Family)GH-A-GH-N。其中,GH-A超家族由18个水解酶家族组成(1,2,5,10,17,26,30,35,39,42,50,51,53,59,72,79,86,113),β-半乳糖苷酶属于其中GH-1,GH-2,GH-35和GH-42(http://www.cazy.org/Glycoside-Hydrolases.html)。目前已报道的耐热β-半乳糖苷酶多属于糖苷水解酶42家族(GH-42)[22]。该家族所属乳糖酶很多来源于极性微生物(如嗜热[23]、嗜冷[4,24]、嗜盐微生物[25]等),因此该家族的乳糖酶结构具有理论研究代表性。GH-42家族乳糖酶具有典型的TIM(Distored triosephosphate isomerase)barrel特征,即由8个重复的β折叠接α螺旋(β/α)8单元构成酶的催化结构域[26]。该水解酶家族的催化机制属于典型的保持型催化(Retaining glycoside hydrolases),氨基酸序列长度为600~700aa,分子量均在70~80ku之间。这一家族中每个成员都具有两个保守的谷氨酸作为催化氨基酸。催化中心通常位于TIM barrel的第4和第7个β片层结构上,因此GH-42基于结构域特征被分类为4/7超家族(4/7 Super Family)[27]。

2.2 耐热β-半乳糖苷酶的催化机制

糖苷水解酶有两种经典的催化机制,即保持型(retaining)机制和反转型(inverting)机制,由Koshland在56年前提出并一直沿用至今。这一理论主要基于糖苷水解酶在催化过程中会出现两种不同的立体化学产物,即产物的异头碳构象与供体底物的相同或不同。水解酶家族的结构特征并不直接决定酶的立体化学催化活性,很多超家族中都同时具有保持型和反转型糖苷水解酶。但分属同一家族中的酶往往具有相同的催化机制。其中,耐热β-半乳糖苷酶所属的GH-42家族中已报道的糖苷水解酶均属保持型。

保持型水解酶遵循两步反应的双替换机制(twostep double-displacement mechanism),包括糖苷-酶复合物过渡态的形成和水解,每步反应均通过酸碱催化完成[28]。这个过程需要两个含羧基的关键氨基酸参与,一个作为亲核基团攻击底物异头碳形成糖苷-酶复合物;另一个羧基基团作为酸碱催化剂,在第一步反应中使羰基氧质子化,第二步反应中催化脱去一分子水。在两个催化关键残基之间需达到一个较小的距离(0.55nm),以满足亲核攻击反应发生的条件。

3 耐热β-半乳糖苷酶的定向进化研究

已有的研究表明,GH-42家族β-半乳糖苷酶对乳糖的水解活性大多很弱或是缺失。究其原因为,耐热β-半乳糖苷酶所属微生物多生长在营养贫瘠的环境中,如温泉[3,15,29]、土壤(Bacillus,Streptomyces spp.)及高盐环境[25,30]等,据此推测进化过程中耐热的β-半乳糖苷酶类利用乳糖并以乳糖作为主要碳源的机会很少,因而乳糖不是这类β-半乳糖苷酶的最适作用底物,故多数耐热β-半乳糖苷酶表现出水解活性弱的特点[31]。目前针对耐热β-半乳糖苷酶功能的改造主要集中在提高其乳糖水解率和低聚半乳糖(galactooligosaccharides)的合成量。这两个生产领域分别应用到了耐热β-半乳糖苷酶的水解催化活性和转糖苷活性,二者有着紧密联系,糖苷键在乳糖酶的催化作用下断裂后,当糖苷受体为水分子时催化结果即表现为糖苷键的水解;与之对应,当糖苷受体为另一糖分子时则表现为糖苷的转移。2010年Yeong-Su Kim等[32]从降低水解产物对乳糖酶抑制作用角度对C. saccharolyticus来源的耐热β-半乳糖苷酶进行改造,通过预测乳糖酶抑制剂半乳糖与酶的结合位点,并对这些位点的氨基酸进行丙氨酸替换。研究发现Phe-349位点是影响半乳糖对酶抑制作用的关键位点,并针对F349进行定点突变,得到的F349S突变体酶在含有半乳糖抑制剂反应体系中乳糖水解率高达99%。2009年,德国学者Placier等[33]采用随机突变的方法对嗜热脂肪芽孢杆菌来源的β-半乳糖苷酶进行改造,筛选得到转糖苷活性提高的突变体R109K。通过对Arg-109位点进行点饱和突变,成功获得低聚半乳糖(Galacto-oligosaccharide)合成能力提高的突变体R109W。

4 展望

耐热β-半乳糖苷酶与常温及低温乳糖酶类相比,其在乳品生产工艺中有着显著的优势。大多数的耐热β-半乳糖苷酶的最适作用温度在60℃以上,高温下热稳定性良好,能够有效降低生产工艺中微生物污染的风险。同时,耐热β-半乳糖苷酶具有较高的抗化学变性作用,在室温下有较长的贮存期。另外,较高的作用温度使耐热β-半乳糖苷酶的催化反应具有较高的初始反应速率和底物溶解浓度,可以提高反应速度,降低反应体系粘度及水解产物对反应的抑制作用,有利于提高生产效率。因而,耐热β-半乳糖苷酶多表现出良好的转糖苷活性。其中来自于Alicyclobacillus acidocaldarius的耐热β-半乳糖苷酶转糖苷活性最高可达592U/mg[34]。围绕耐热β-半乳糖苷酶高温下生产优势的研究报道很多,但将其应用到生产的研究还不是很多,仅有个别重组表达的耐热β-半乳糖苷酶用于低聚乳糖生产的研究报道,包括Geobacillus stearothermophilus[33]、Pyrococcus furiosus[35]以及Thermus sp.[36]来源的耐热β-半乳糖苷酶。虽然耐热β-半乳糖苷酶在生产及贮存方面的优点越来越引起人们的关注,但由于热稳定性的酶大都来源于嗜热微生物,这些微生物往往难以进行大规模培养,或需要高温发酵设备。利用基因工程技术构建能高效表达耐热酶的常温重组工程菌,可有效解决这一难题。因为常温重组工程菌在发酵过程中产生的宿主蛋白绝大多数对热不稳定,只要将工程菌的发酵液进行热处理就可方便地纯化异源耐热酶蛋白,易于大规模生产及纯化。但未来还需要在耐热β-半乳糖苷酶高效表达系统构建领域进行不断的探索,这也将是实现耐热β-半乳糖苷酶应用价值的一项重要课题。

[1]Molotov SV,Duzhii DE,Danilevich VN,et al.Cloning of the Streptococcus thermophilus beta-galactosidase gene and its expression in Escherichia coli and Bacillus subtilis cells[J].Mol Gen Mikrobiol Virusol,1990(4):10-14.

[2]Chen W,Chen H,Xia Y,et al.Production,purification,and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus[J].J Dairy Sci,2008,91(5):1751-1758.

[3]Ohtsu N,Motoshima H,Goto K,et al.Thermostable betagalactosidasefrom an extreme thermophile,Thermus sp.A4:enzyme purification and characterization,and gene cloning and sequencing [J].Biosci Biotechnol Biochem,1998,62(8):1539-1545.

[4]Gutshall KR,Trimbur DE,Kasmir JJ,et al.Analysis of a novel gene and beta-galactosidase isozyme from a psychrotrophic Arthrobacter isolate[J].J Bacteriol,1995,177(8):1981-1988.

[5]Hinz SW,Brock VD,Beldman LA,et al.Beta-galactosidase from Bifidobacterium adolescentis DSM20083 prefers beta(1,4) -galactosides over lactose[J].Appl Microbiol Biotechnol,2004,66(3):276-284.

[6]YuanT,Yang P,Wang Y,et al.Heterologous expression of a gene encoding a thermostable beta-galactosidase from Alicyclobacillus acidocaldarius[J].Biotechnol Lett,2008,30(2):343-348.

[7]Biswas S,Kayastha AM,Seckler R.Purification and characterization of a thermostable beta-galactosidase from kidney beans(Phaseolus vulgaris L.)cv.PDR14[J].J Plant Physiol,2003,160(4):327-337.

[8]BatraN,Singh J,Banerjee UC,et al.Production and characterization of a thermostable beta-galactosidase from Bacillus coagulans RCS3[J].Biotechnol Appl Biochem,2002,36(1):1-6.

[9]Wanarska M,Kur J,Pladzyk R,et al.Thermostable Pyrococcus woesei beta-D-galactosidase—high level expression,purification and biochemical properties[J].Acta Biochim Pol,2005,52(4):781-787.

[10]Pisani FM,Rella R,Raia CA,et al.Thermostable betagalactosidase from the archaebacterium Sulfolobus solfataricus. Purification and Properties[J].Eur J Biochem,1990,187(2):321-328.

[11]Lee JH,Kim YS,Yeom SJ,et al.Characterization of a glycoside hydrolase family 42 beta-galactosidase from Deinococcus geothermalis[J].Biotechnol Lett,2010.

[12]Shaikh SA,Khire JM,Khan MI.Characterization of a thermostable extracellular beta-galactosidase from a thermophilic fungus Rhizomucor sp[J].Biochim Biophys Acta,1999,1472(1-2):314-322.

[13]Katrolia P,Zhang M,Yan Q,et al.Characterisation of a thermosable family 42 beta-galactosidase(BgalC)family from Thermotoga maritima showing efficient lactose hydrolysis[J].Food Chemistry,2011,125:614-621.

[14]Ulrich JT,McFeters GA,Temple KL.Induction and characterization of-galactosidase in an extreme thermophile[J].J Bacteriol,1972,110(2):691-698.

[15]Vian A,Carrascosa AV,Garcia JL,et al.Structure of the beta-galactosidase gene from Thermus sp.strain T2:expression in Escherichia coli and purification in a single step of an active fusion protein[J].Appl Environ Microbiol,1998,64(6):2187-2191.

[16]Dion M,Fourage L,Hallet JN,et al.Cloning and expression of a beta-glycosidase gene from Thermus thermophilus.Sequence and biochemical characterization of the encoded enzyme[J]. Glycoconj J,1999,16(1):27-37.

[17]Daabrowski S,Maciunska J,Synowiecki J.Cloning and nucleotide sequence of the thermostable beta-galactosidase gene from Pyrococcus woesei in Escherichia coli and some properties of the isolated enzyme[J].Mol Biotechnol,1998,10(3):217-222.

[18]Dabrowski S,Sobiewska G,Maciunska J,et al.Cloning,expression,and purification of the His(6)-tagged thermostable beta-galactosidase from Pyrococcus woesei in Escherichia coli and some properties of the isolated enzyme[J].Protein Expression and Purification,2000,19(1):107-112.

[19]Cobucci-PonzanoB,Aurilia V,Riccio G,et al.A new archaeal beta-glycosidase from Sulfolobus solfataricus:seeding a novel retaining beta-glycan-specific glycoside hydrolase family along with the human non-lysosomal glucosylceramidase GBA2[J].J Biol Chem,2010,285(27):20691-20703.

[20]Cannio R,de Pascale D,Rossi M,et al.Gene expression of a thermostable beta-galactosidase in mammalian cells and its application in assays of eukaryotic promoter activity[J].Biotechnol Appl Biochem,1994,19(2):233-244.

[21]Burchhardt G,Bahl H.Cloning and analysis of the betagalactosidase-encoding gene from Clostridium thermosulfurogenes EM1[J].Gene,1991,106(1):13-19.

[22]Naumov DG,Karreras M.New program PSI protein classifier automatizes the PSI-BLAST results analysis[J].Mol Biol(Mosk),2009,43(4):709-721.

[23]Hirata H,Fukazawa T,Negoro S,et al.Structure of a betagalactosidase gene of Bacillus stearothermophilus[J].J Bacteriol,1986,166(3):722-727.

[24]Coombs JM,Brenchley JE.Biochemical and phylogenetic analyses of a cold-active beta-galactosidase from the lactic acid bacteriumCarnobacteriumpiscicolaBA[J].ApplEnvironMicrobiol,1999,65(12):5443-5450.

[25]Holmes ML,Scopes RK,Moritz RL,et al.Purification and analysis of an extremely halophilic beta-galactosidase from Haloferax alicantei[J].Biochim Biophys Acta,1997,1337(2):276-286.

[26]Breton C,Snajdrova L,Jeanneau C,et al.Structures and mechanisms of glycosyltransferases[J].Glycobiology,2006,16(2):29R-37R.

[27]Cantarel BL,Coutinho PM,Rancurel C,et al.The Carbohydrate-Active EnZymes database(CAZy):an expert resource for Glycogenomics[J].Nucleic Acids Res,2009,37(Database issue):D233-238.

[28]Ly HD,Withers SG.Mutagenesis of glycosidases[J].Annu Rev Biochem,1999,68:487-522.

[29]KangSK,Cho KK,Ahn JK,et al.Three forms of thermostable lactose-hydrolase from Thermus sp.IB-21:cloning,expression,and enzyme characterization[J].J Biotechnol,2005,116(4):337-346.

[30]Sheridan PP,Brenchley J E.Characterization of a salt-tolerant family 42 beta-galactosidase from a psychrophilic antarctic Planococcus isolate[J].Appl Environ Microbiol,2000,66(6):2438-2444.

[31]Shipkowski S,Brenchley JE.Bioinformatic,genetic,and biochemical evidence that some glycoside hydrolase family 42 beta-galactosidases are arabinogalactan type I oligomer hydrolases [J].Appl Environ Microbiol,2006,72(12):7730-7738.

[32]Kim YS,Yeom SJ,Oh DK.Reduction of galactose inhibition via the mutation of beta-galactosidase from Caldicellulosiruptor saccharolyticus for lactose hydrolysis[J].Biotechnol Lett,2010.

[33]Placier G,Watzlawick H,Rabiller C,et al.Evolved betagalactosidases from Geobacillus stearothermophilus with improved transgalactosylation yield for galacto-oligosaccharide production [J].Appl Environ Microbiol,2009,75(19):6312-6321.

[34]Di Lauro B,Strazzulli A,Perugino G,et al.Isolation and characterization of a new family 42 beta-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius:identification of the active site residues[J].Biochim Biophys Acta,2008,1784(2):292-301.

[35]Bruins ME,Strubel M,van Lieshout JFT,et al.Oligosaccharide synthesis by the hyperthermostable β-glucosidase from Pyrococcus furiosus:kinetics and modelling[J].Enzyme and Microbial Technology,2003,33(1):3-11.

[36]Akiyama K,Takase M,Horikoshi K,et al.Production of galactooligosaccharides from lactose using a beta-glucosidase from Thermus sp.Z-1[J].Biosci Biotechnol Biochem,2001,65(2):438-441.

Research progress in thermostable β-galactosidases

DONG Yi-ning,CHEN Hai-qin,LIU Xiao-ming,ZHANG Hao,CHEN Wei*
(School of Food Science and Technology,Jiangnan University,Wuxi 214122,China)

Thermostable β-galactosidases have become commercially important in the field of diary industry, owing to their high catalytic temperature and stability.Because of their significant value in theoretical research and application,thermostable β-galactosidases have

a great deal of attention.In this review,the research progress on thermostable β-galactosidases were discussed,including the sources of microorganism, characteristics,structural properties,catalytic mechanism and directed evolution of thermostable β-galactosidases. The industrial needs for thermostable-galactosidases and improvements required to their application in the future were also suggested.

thermostable β-galactosidase;structure properties;catalytic mechanism;directed evolution

TS201.2+5

A

1002-0306(2012)01-0384-04

2011-01-10 *通讯联系人

董艺凝(1980-),女,博士研究生,研究方向:食品生物技术。

中央高校基本科研业务费专项资金(JUSRP11017,JUSRP31002)。

猜你喜欢
乳糖酶水解酶糖苷
氨基甲酸乙酯水解酶的家族生物信息学分析
婴儿乳糖酶缺乏的相关因素Logistic回归分析
基于主成分分析优化参数预测水解酶的亚类
神奇水解酶专“吃”塑料
加拿大批准一种乳糖酶用于酶制剂与部分乳制品
加拿大批准一种乳糖酶用于酶制剂与部分乳制品
甜叶菊及其糖苷的研究与发展探索
利用烷基糖苷迁移和扩张共轭亚油酸囊泡pH窗口
固体超强酸催化合成丁基糖苷
微生物β-半乳糖苷酶的研究进展