微小RNA在糖尿病肾病中的研究进展

2020-11-18 08:51田莎莎杨晓鹏郭珲
中国医药导报 2020年27期
关键词:微小RNA生物标志物糖尿病肾病

田莎莎 杨晓鹏 郭珲

[摘要] 糖尿病肾病(DN)是糖尿病微血管病变的主要并发症之一,已成为我国导致慢性肾脏疾病的首要原因,深入了解DN的发病机制,寻找新的诊断及治疗靶点至关重要。微小RNA(miRNA)作为一种普遍存在的非编码小分子RNA,广泛参与基因转录后调节及表观遗传调节等过程,其表达或功能异常在DN的发生发展中起重要作用,介导了DN中肾组织纤维化、炎症反应、足细胞凋亡等病理生理改变。近年来miRNA对DN早期诊断及预后判断的价值得到证实,同时通过抑制或重建miRNA将其作为DN的治疗靶点也逐步应用于临床。但是miRNA在DN的发病机制及临床应用中仍存在极大地挑战。

[关键词] 糖尿病肾病;微小RNA;生物标志物;治疗靶点

[中图分类号] R587.2          [文献标识码] A          [文章编号] 1673-7210(2020)09(c)-0058-04

Advancements of microRNA in diabetic nephropathy

TIAN Shasha1   YANG Xiaopeng1   GUO Hui1,2

1.Department of Nephrology, the Second Hospital of Shanxi Medical University, Shanxi Province, Taiyuan   030000, China; 2.Department of Nephrology, Shenzhen Baoan Shiyan People′s Hospital, Guangdong Province, Shenzhen   518005, China

[Abstract] Diabetic nephropathy (DN) is one of the main complications of diabetic microangiopathy and has been the leading cause of chronic kidney disease in China. It′s important to understand the pathogenesis and find new diagnostic and therapeutic targets of DN. MicroRNA (miRNA), as a ubiquitous non-coding small molecular RNA, is widely involved in gene post-transcriptional and epigenetic regulations. The expression or abnormal function play an important role in the occurrence and development of DN, mediating the pathophysiological changes such as the pathophysiological changes of renal tissue fibrosis, inflammation, podocyte apoptosis in DN. Recently, the value of miRNA in the early diagnosis and prognosis judgment of DN has been confirmed and it has been gradually used in clinical treatment as a therapeutic target for DN by inhibiting or reconstructing miRNA. However, there are great challenges of miRNA in the pathogenesis and clinical application for DN in the future.

[Key words] Diabetic nephropathy; MicroRNA; Biomarker; Therapeutic target

糖尿病腎病(diabetic nephropathy,DN)是糖尿病主要的微血管并发症。流行病学调查显示[1],到2045年全球糖尿病患者将达到6.93亿人,其中30%~40%可能进展至DN。一项关于我国2010—2015年慢性肾脏病(CKD)趋势的研究显示[2],CKD住院患者中与糖尿病相关的CKD住院人口比例为1.10%,已超过肾小球肾炎(0.75%),成为我国导致终末期肾病的首要原因。DN发病机制为在高糖环境下引起糖代谢紊乱、肾血流动力学改变、氧化应激、细胞因子激活[3]等,出现系膜细胞增生和肥大、细胞外基质(ECM)积聚及肾小管间质纤维化为特征的病理改变,最终导致肾纤维化及肾功能衰竭[4]。近年来,随着对微小RNA(miRNA)研究的深入,其参与肾相关细胞激活、增殖、凋亡以及信号通路转导等基因学变化[5],在DN的病理过程中发挥重要作用,并可能作为DN新的生物标志物及治疗靶点。

1 miRNA参与DN的作用机制

miRNA是一类含19~25个核苷酸的单链小分子RNA,具有高度保守性、组织时序性和特异性。miRNA参与形成RNA诱导沉默复合体(RISC),与靶mRNA的3′UTR相识别对靶基因进行负向调控,完全配对时降解靶mRNA,不完全配对时抑制靶mRNA翻译[6]。此外,miRNA-mRNA结合位点(6~8个碱基对)较短,每个miRNA能够靶向多个不同的mRNA,因此,miRNA通过在转录后水平调控靶基因表达并参与机体各种生理与病理过程的调节,对机体组织器官的生长发育及疾病的发生发展起到重要调控作用[7]。现已证明miR-192、miR-21、miR-29家族等在肾组织中呈特异性高表达,且在肾小球基底膜和系膜的损伤、足细胞的损伤及肾间质纤维化的调控方面都起到关键作用[8]。

1.1 miR-192

链脲菌素(STZ)糖尿病小鼠肾小球系膜细胞中转化生长因子(TGF)-β刺激miR-192表达升高,抑制转录抑制因子Smad作用蛋白-1(SIP1)表达,导致TGF-β/Smad通路激活进而促进肾小球系膜细胞增殖及ECM合成[9]。相反,Liu等[10]在高糖培养的肾小管上皮细胞中发现miR-192表达减少,早期生长反应因子1(Egr1)表达升高并促进肾小管上皮细胞上皮间质转化(EMT)等多种途径参与肾纤维化的发生,而转染miR-192模拟物可抑制Egr1表达,减轻肾小管间质纤维化。miR-192在系膜细胞和小管上皮细胞中的表达不同,考虑可能与模型和实验条件、细胞类型以及在特定细胞中表达量不同有关。

一项纳入464例糖尿病患者的研究[11]发现,在DN早期血清miR-192水平降低与尿白蛋白/肌酐比值(UACR)呈负相关,且miR-192的降低伴随TGF-β、纤维连接蛋白水平的升高,提示miR-192对DN的早期诊断及疾病监测有一定价值。

1.2 miR-21

高糖诱导下肾细胞miR-21显著升高,抑制其靶基因张力蛋白同源基因(PTEN)和软脂肪酰化磷蛋白同源物(Spry)表达,间接活化TGF-β/PI3K/Akt信号通路,引起系膜细胞肥大及肾间质纤维化[12]。此外,miR-21对足细胞的损伤通过抑制PTEN诱导血管内皮生长因子(VEGF)高表达,调控基质金属蛋白酶抑制因子3(TIMP3)的表达,继而活化基质金属蛋白酶(MMPs),促进足细胞凋亡及炎症反应[13]。而敲除miR-21可上调Smad7水平继而阻断TGF-β/Smad3/Akt及TGF-β/NF-κB信号通路,减轻小管上皮细胞EMT和肾小球纤维化[14]。

有报道称[15],在DN不同阶段患者的血清和肾脏样本中miR-21-5p表达均上调,这种miRNA与估算的肾小球滤过率(eGFR)呈负相关,与血清肌酐水平(Scr)、肾小管间质损伤和蛋白尿水平呈正相关。此外,在Scr水平快速上升或进展到终末期肾病的DN患者中miR-21-5p表达上调,其表达水平与肾功能恶化速度及肾纤维化程度密切相关[16]。

1.3 miR-29家族

miR-29家族中的不同分子存在功能及表达差异,其中miR-29a/b可能具有肾脏保护作用,而miR-29c则促进DN的进展。miR-29a可通过调节Wnt/β-catenin信号和Wnt拮抗蛋白(DKK1)的表达来保护系膜细胞免于纤维化和凋亡[17]。Bao等[18]研究发现高糖或TGF-β刺激可抑制miR-29b表达,促进胶原蛋白生成;miR-29b过表达则可抑制TGF-β/Smad3、Sp1/NF-κB信号通路激活,进而抑制促炎因子的释放,减缓ECM的积聚。此外,Sun等[19]在2型糖尿病db/db小鼠中发现依赖于Smad3的lncRNA表皮生长因子4(Erbb4-IR)在DN中高表达,通过Erbb4-IR/miR-29b轴抑制miR-29b的表达,导致肾小球硬化及肾间质纤维化,相反,沉默肾脏Eebb4-IR可上调miR-29b,从而保护肾脏免受进行性肾损伤。高血糖条件下的miR-29c在足细胞中过表达,通过抑制具有抗炎作用的TTP蛋白促进炎症介质表达而放大炎症反应,加速DN的病理損伤[20]。

在DN患者中,miR-29a-3p在血清、尿液和肾脏组织中均上调,高表达的miR-29a-3p可降低DN向终末期肾病快速进展的风险,提示DN患者miR-29a上调可能是机体保护肾功能的一种代偿方式[16]。此外,在DN小鼠模型中,抗糖尿病药物DPP4抑制剂利格列汀可以上调miR-29a进而延缓纤维化的进展[21]。Chen等[22]研究发现肾miR-29b功能的缺失与蛋白尿及肾纤维化有关,通过基因疗法上调miR-29b可逆转DN中肾小球系膜细胞胶原基质的上调,敲除miR-29b则会加重。以上显示miR-29a/b在DN中发挥保护作用。

2 miRNA作为DN的生物标志物

临床上DN的诊断主要依赖于尿微量白蛋白、UACR、肾组织活检等方式,从早期、特异性、敏感性及非侵入性检测等方面来说,miRNA可能更具优势。

一项包含213例DN患者的肾活检结合尿样检测分析发现[23],miR-2861、miR-1915-3p和miR-4532表达水平较健康对照组明显下降,与eGFR呈正相关,与蛋白尿、肾小管间质纤维化和肾小管萎缩程度呈显著负相关。提示这3种miRNA在DN纤维化形成中的作用。此外,对DN、糖尿病合并膜性肾病和正常组织学患者尿液中的miRNA检测分析发现[24],miR-27b-3p和miR-1228-3p在DN患者尿液中特异性下调,其水平与肾纤维化程度呈负相关,而在其他两组中无明显变化。提示尿miR-27b-3p和miR-1228-3p可能在区分DN与2型糖尿病合并非糖尿病性肾损害存在一定价值。以上均体现了miRNA作为DN生物标志物的特异性。

Eissa等[25]在DN患者中发现miR-133b、miR-342和miR-30a与尿蛋白呈正相关,在出现异常蛋白尿(≥20 μg/min)之前即发生了改变,且miR-342-3在DN患者的尿液或肾活检组织中上调,与UACR和Scr水平呈正相关,与eGFR呈负相关,提示以上miRNAs可能作为DN早期的敏感性检测指标。Roux等[26]研究发现DN患者的血清miR-152-3p水平升高,且与2型糖尿病患者发生DN的风险有关,提示其有望超越尿白蛋白成为DN早期诊断的生物标志物。

此外,miRNA还有一定的预后价值,血清miR-126水平降低,与蛋白尿呈负相关,与eGFR呈正相关,并可增加出现大量蛋白尿(≥200 μg/min)的风险,提示miR-126的表达减少预示DN进展的风险增高。DN患者血清miR-130b与血清肌酐、尿蛋白排泄率及肾小管上皮间质纤维化程度呈负相关[27],这些miRNA可作为评估DN进展程度的生物标志物。

3 miRNA作為DN的治疗靶点

目前可通过miRNA“海绵”、小分子抑制剂及反义寡核苷酸(ASO)来抑制miRNA的活性,其中反义寡核苷酸是最常用来抑制miRNA的技术[28]。ASO主要通过提供完全匹配的反义核苷酸链来阻断miRNA与目标序列结合,其中ASO在细胞内的稳定性及有效递送借助于化学修饰来实现,如亲和力及特异性均较强的锁核苷酸(LNA),在糖尿病小鼠中注射LNA-antimiR-192可有效降低miR-192的表达,减轻肾纤维化;使用LNA-antimiR-21阻断miR-21表达可减弱单侧输尿管梗阻诱导的肾纤维化。此外,还有小分子化学抑制剂如LIN28(Let-7抑制剂)或HIPK2(miR-25抑制剂)也已经被筛选和测试用于治疗糖尿病并发症[29]。重建miRNA活性则可通过miRNA模拟物来实现,如miR-29作为一种抗纤维化的miRNA能够抑制促纤维化蛋白的表达,减轻ECM沉积,miR-29模拟物(MRG-201)已启动了Ⅰ期临床试验[30]。因此,靶向特异性调控miRNA可能是治疗DN的新方法。

4 小结与展望

综上,目前对miRNA在DN中的作用机制及作为DN新的生物标志物和治疗靶点有了进一步认识,但是实现miRNA对DN的诊断、治疗仍有很多问题亟待解决。如许多研究对同一miRNA对DN的作用存在争议;作为生物标志物,miRNA检测的特异性及灵敏度还需验证,如有些miRNA在血清、尿液及肾组织中的表达水平不一致,以及在不同肾脏细胞内的表达也存在差异;作为治疗靶点,保持miRNA靶向寡核苷酸稳定性及有效递送的技术尚不成熟,miRNA作为药物其有效性及安全性等问题仍待解决。相信随着微阵列、高通量测序等技术的发展,可以明确更多的miRNA及其在肾脏生理和病理中的精准调控机制,为DN的预防和精准治疗提供更多的可能。

[参考文献]

[1]  Cho NH,Shaw JE,Karuranga S,et al. IDF Diabetes Atlas:Global estimates of diabetes prevalence for 2017 and projections for 2045 [J]. Diabetes Res Clin Pract,2018,138:271-281.

[2]  Zhang L,Long J,Jiang W,et al. Trends in Chronic Kidney Disease in China [J]. N Engl J Med,2016,375(9):905-906.

[3]  Badal SS,Danesh FR. New insights into molecular mechanisms of diabetic kidney disease [J]. Am J Kidney Dis,2014, 63(2 Suppl 2):S63-S83.

[4]  Shikata K,Makino H. Microinflammation in the Pathogenesis of Diabetic Nephropathy [J]. J Diabetes Investig,2013, 4(2):142-149.

[5]  Dewanjee S,Bhattach N. MicroRNA:A new generation therapeutic target in diabetic nephropathy [J]. Biochem Pharmacol,2018,155:32-47.

[6]  Palazzo AF,Lee ES. Non-coding RNA:what is functional and what is junk? [J]. Front Genet,2015,6:2.

[7]  Sankrit H,Kulk YA,Gaikwad AB. Diabetic nephropathy:The regulatory interplay between epigenetics and microRNAs [J]. Pharmacol Res,2019,141:574-585.

[8]  Assmann TS,Recamonde-Mendoza M,de Souza BM,et al. MicroRNAs and diabetic kidney disease:Systematic review and bioinformatic analysis [J]. Mol Cell Endocrinol,2018,477:90-102.

[9]  Kato M,Dang V,Wang M,et al. TGF-beta induces acetylation of chromatin and of Ets-1 to alleviate repression of miR-192 in diabetic nephropathy[J]. Sci Signal,2013,6(278):ra43.

[10]  Liu F,Zhang ZP,Xin GD,et al. miR-192 prevents renal tubulointerstitial fibrosis in diabetic nephropathy by targeting Egr1 [J]. Eur Rev Med Pharmacol Sci,2018,22(13):4252-4260.

[11]  Ma X,Lu C,Lv C,et al. The Expression of miR-192 and Its Significance in Diabetic Nephropathy Patients with Different Urine Albumin Creatinine Ratio [J]. J Diabetes Res,2016,2016:6789402.

[12]  McClell AD,Herman-Edelstein M,Komers R,et al. miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7 [J]. Clin Sci(Lond),2015, 129(12):1237-1249.

[13]  Chen X,Zhao L,Xing Y,et al. Down-regulation of microRNA-21 reduces inflammation and podocyte apoptosis in diabetic nephropathy by relieving the repression of TIMP3 expression [J]. Biomed Pharmacother,2018,108:7-14.

[14]  Liu L,Wang Y,Yan R,et al. BMP-7 inhibits renal fibrosis in diabetic nephropathy via miR-21 downregulation [J]. Life Sci,2019,238:116957.

[15]  Baker MA,Davis SJ,Liu P,et al. Tissue-Specific MicroRNA Expression Patterns in Four Types of Kidney Disease [J]. J Am Soc Nephrol,2017,28(10):2985-2992.

[16]  Pezzolesi MG,Satake E,McDonnell KP,et al. Circulating TGF-beta1-Regulated miRNAs and the Risk of Rapid Progression to ESRD in Type 1 Diabetes [J]. Diabetes,2015,64(9):3285-3293.

[17]  Hsu YC,Chang PJ,Ho C,et al. Protective effects of miR-29a on diabetic glomerular dysfunction by modulation of DKK1/Wnt/beta-catenin signaling [J]. Sci Rep,2016,6:30575.

[18]  Bao L,Li J,Zha D,et al. Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-κB pathways [J]. Int Immunopharmacol,2018,54:245-253.

[19]  Sun SF,Tang PMK,Feng M,et al. Novel lncRNA Erbb4-IR Promotes Diabetic Kidney Injury in db/db Mice by Targeting miR-29b [J]. Diabetes,2018,67(4):731-744.

[20]  Guo J,Li J,Zhao J,et al. MiRNA-29c regulates the expression of inflammatory cytokines in diabetic nephropathy by targeting tristetraprolin [J]. Sci Rep,2017,7(1):2314.

[21]  Kanasaki K,Shi S,Kanasaki M,et al. Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen [J]. Diabetes,2014,63(6):2120-2131.

[22]  Chen HY,Zhong X,Huang XR,et al. MicroRNA-29b inhibits diabetic nephropathy in db/db mice [J]. Mol Ther,2014,22(4):842-853.

[23]  Card-Gonzalez M,Srivastava A,Pavkovic M,et al. Identification,Confirmation,and Replication of Novel Urinary MicroRNA Biomarkers in Lupus Nephritis and Diabetic Nephropathy [J]. Clin Chem,2017,63(9):1515-1526.

[24]  Consez F,Barozzino M,Pesce F,et al. Urinary miRNA-27b-3p and miRNA-1228-3p correlate with the progression of Kidney Fibrosis in Diabetic Nephropathy [J]. Sci Rep,2019,9(1):11357.

[25]  Eissa S,Matboli M,Bek MM. Clinical verification of a novel urinary microRNA panal:133b,-342 and -30 as biomarkers for diabetic nephropathy identified by bioinformatics analysis [J]. Biomed Pharmacother,2016,83:92-99.

[26]  Roux M,Perret C,Feigerlova E. Plasma levels of hsa-miR-152-3p are associated with diabetic nephropathy in patients with type 2 diabetes [J]. Nephrol Dial Transplant,2018,33(12):2201-2207.

[27]  Barutta F,Bruno G,Matullo G. MicroRNA-126 and micro-/macrovascular complications of type 1 diabetes in the EURODIAB Prospective Complications Study [J]. Acta Diabetol,2017,54(2):133-139.

[28]  Kato M. Noncoding RNAs as therapeutic targets in early stage diabetic kidney disease [J]. Kidney Res Clin Pract,2018,37(3):197-209.

[29]  Roos M,Pradere U,Ngondo RP,et al. A Small-Molecule Inhibitor of Lin28 [J]. ACS Chem Biol,2016,11(10):2773-2781.

[30]  Liu R,Das B,Xiao W,et al. A Novel Inhibitor of Homeodomain Interacting Protein Kinase 2 Mitigates Kidney Fibrosis through Inhibition of the TGF-beta1/Smad3 Pathway [J]. J Am Soc Nephrol,2017,28(7):2133-2143.

(收稿日期:2020-03-12)

猜你喜欢
微小RNA生物标志物糖尿病肾病
MiRNA在肺癌诊断与治疗中的应用进展
基于UPLC—Q—TOF—MS技术的牛血清白蛋白诱导过敏反应的代谢组学研究
基于UPLC—Q—TOF—MS技术的牛血清白蛋白诱导过敏反应的代谢组学研究
贝那普利联合前列地尔治疗糖尿病肾病的临床观察
黄葵胶囊联合缬沙坦治疗糖尿病肾病临床疗效
终末期肾脏疾病患者的病因分析
鼻咽癌肿瘤干细胞miRNAs和 lncRNAs及mRNAs表达谱分析
乳腺癌与糖尿病关联研究的新进展