植物精油微乳技术及在食品保鲜中的应用

2021-04-01 03:27石俊杰鲁晓翔
食品与发酵工业 2021年6期
关键词:微乳乳液活性剂

石俊杰,鲁晓翔

(天津商业大学 生物技术与食品科学学院,天津市食品生物技术重点实验室,天津, 300134)

食品中含有丰富的营养物质,在贮藏过程中,由于自身生理代谢或外界微生物污染等原因,导致其营养价值降低、货架期缩短[1]。因此,为保证食品的品质和延长货架期,需要采取适当的保鲜措施。

传统食品保鲜技术主要分为:物理保鲜、化学保鲜和生物保鲜[2]。其中,物理保鲜主要是气调贮藏、低温冷藏、热处理及辐照等,虽然效率高,但对能源要求也高[3];化学保鲜方法主要利用天然的或化学合成的防腐剂,效果较好,但随着消费者对健康、安全的消费意识增强,天然的、绿色的化学保鲜剂已成为当今发展的趋势[4];生物保鲜技术是指利用微生物及其抗菌产品的抗菌性能,以延长食品的货架期,常见的有:噬菌体、细菌素等[5]。与之相比,植物精油是天然的化学保鲜剂,具有抑菌、抗炎、抗氧化等优点而成为学术界研究的热点。

1 植物精油概况

1.1 植物精油

植物精油(essential oils,EOs)是植物体内的次生代谢产物,具有强烈的芳香气味,在常温下能挥发成油状液体物质,主要存在于植物的根、芽、茎、叶等[6]。植物精油所含化学成分复杂,主要成分包括萜类衍生物、芳香族化合物、脂肪族化合物、含氮含硫类化合物等[7],如表1所示。大量研究表明,许多植物精油具有广泛的抗菌性,对常见的致病菌和病毒都有一定的杀菌活性。例如,有研究证明肉桂精油主要成分是肉桂醛、香豆内酯等,具有抗氧化、抑制霉腐微生物生长等作用,在食品保鲜中发挥着重要的应用价值[8];百里香精油主要成分是百里香酚、香芹酚等,可降低果蔬腐烂率和菌落总数等[9]。

表1 植物精油的主要成分Table 1 Main component of plant essential oils

1.2 植物精油在应用中存在的问题

植物精油易挥发,且对光、热、氧等环境因素敏感,进而影响其作用功效[10]。此外,精油具有疏水性和强烈的芳香气味,使其在食品中的应用受到极大地限制。研究表明,将精油微乳化,可增强精油的溶解性和生物利用度,提高其稳定性[11]。

2 精油微乳液概述

2.1 微乳液定义、分类

微乳液(microemulsion,ME)是由油相、水相、表面活性剂和助表面活性剂组成的热力学稳定的胶体溶液,粒径为1~100 nm[12]。与普通乳液相比,微乳液具有外观透明,粒径小、颗粒分散均匀,流动性好,且离心或长期放置不易发生絮凝、沉淀或相分离等优势,具有较高的稳定性[13]。微乳液对水不溶性、油不溶性物质均有较强的增溶能力,因此可作为这类物质的载体。这一技术克服了精油不溶于水、稳定性差、易挥发等缺点。

微乳液的结构取决于水,油和两亲物质,以及界面的性质[14]。通常,根据油和水作为分散相的情况,将微乳液分为三类:水包油型(Oil/Water型,O/W型)也称为Winsor Ⅰ型、油包水型(Water/Oil型,W/O型)也称为Winsor Ⅱ型以及双连续型(Bicontinuous型,BC型)也称为Winsor Ⅲ和Ⅳ[15]。Winsor I:水包油(O/W)型,即体系中含有少量的表面活性剂,并与过量的水相共存,常用来包埋一些脂溶性物质;Winsor II:油包水(W/O)型,即体系富含表面活性剂,并与过量的油相共存,多用来微乳化功能性物质,如可溶性维生素和功能活性肽;Winsor III:此时微乳液与过量的水相和油相共存,而Winsor IV型是一个单相各向同性的溶液形成添加更多的表面活性剂。Winsor III和IV都是双连续型纳米乳[16](图1)。

图1 微乳结构模型Fig.1 Microemulsion structure model

2.2 微乳液的组成

微乳主要是由表面活性剂、助表面活性剂、水、油四部分组成。

2.2.1 表面活性剂

表面活性剂可分为离子型、两性离子型及非离子型等。表面活性剂是构成微乳液最基本的物质,其作用主要为降低液体表面张力,促进微乳液的形成[17]。表面活性剂一端是非极性的碳氢链(烃基)与水的亲和力极小,常称疏水基;另一端则是极性基团(如—OH、—COOH、—NH2、—SO2H等)与水有很大的亲和力,故称亲水基,表面活性剂的亲水亲油平衡值(hydrophilic-lipophilic balance,HLB)在3~8的表面活性剂,适合用于制备 W/O 型微乳液;HLB 值在8~16时,则适合制备O/W型微乳液[18]。常用的表面活性剂有吐温系列和斯盘系列。Tween-20,Tween-40,Tween-80都是聚合物,在宏观结构上的差别是酯键的取代基不同,常作为O/W型乳化剂,使其他物质均匀在溶液中分散, Tween系列作为亲水乳化剂被切割成亲水部分和亲脂部分[19](图2)。此外,在制备微乳的过程中,单一表面活性剂提供的 HLB 值可能难以达到适宜的乳化效果,通常将表面活性剂复配得到合适的 HLB 值用于制备理化性质稳定的微乳[20]。

图2 Tween系列的亲水部分和不同疏水部分的三维结构模拟图Fig.2 Three-dimensional structure simulation of hydrophilic part and different hydrophobic part of Tween series

2.2.2 助表面活性剂

助表面活性剂能够促进表面活性剂降低油水两相的界面张力,对结晶相的形成有抑制作用,从而促使微乳自发形成,并提高其稳定性[21]。常用的助表面活性剂有醇类、脂肪酸、胺类、醚类等[22]。其中短链醇是最常见的助表面活性剂。研究表明,化学结构中含羟基数越多,其亲水性和极性越强,是因为其分子组成的羟基能破坏液晶相的稳定性,提高油相增容的能力[23]。刘欣等[24]在制备玫瑰精油微乳时,研究了乙醇、甘油、1,2丙二醇和聚乙二醇等助表面活性剂对玫瑰精油微乳体系的影响。结果表明,当乙醇作为助表面活性剂时,微乳具有最大的面积比、最小的稀释比和最佳的稳定性。乙醇具有良好的流动性,而其他的微乳则黏度大,流动性差,因此,乙醇被选为最佳助表面活性剂。

2.2.3 油相

油相作为微乳液的重要组成部分,其结构和大小对微乳液的形成有重要影响。在微乳液制备的过程中,当油相分子很小时,容易渗透表面活性剂进行有序安排,促进微乳液的形成;当油相分子非常大时,将会聚集在表面活性剂的疏水端,这并不利于微乳液的形成[25]。

2.2.4 水相

制备微乳液常用的水相有去离子水和蒸馏水。此外,陶紫等[26]在制备微乳过程中通过添加不同浓度的氯化钠,研究不同离子强度对微乳液形成的影响。结果表明,随着离子强度的升高,体系微乳化的效果更好。另外也有在微乳体系中添加碳酸钠、羧甲基壳聚糖等[27]。

2.3 植物精油微乳液的制备方法

微乳常用的制备方法有3种:低能乳化法、高压均质法和相变温度法[28]。

2.3.1 低能乳化法

低能乳化法应用最为广泛,低能乳化法又包括:(1)加水法:将油、助表面活性剂和表面活性剂混合均匀,然后向体系中滴加水相,体系在某一时刻从浑浊变成澄清透明,从而形成为微乳液;(2)加油法:在水与表面活性剂的混合物中滴加油,体系在某一时刻从浑浊变成澄清透明,从而形成为微乳液;(3)3组分直接混合法:将组合物中的所有组分混合到一起的方法[29];此外,各组分的加入顺序液会影响到微乳液的形成[30]。

2.3.2 高压均质法

均质化也可用于形成微乳状液,随着高压均质次数和压力的增加,油滴动能增加,相互碰撞加速,导致微乳的平均粒径不断降低,从而提高精油的稳定性[31];但是,乳化过程通常效率低下(由于散热)。此外,由于一些体系在未形成微乳液时黏度极大,不利于均质操作。因此,高压均质法的应有范围有限。

2.3.3 相变温度法(phase inversion temperature method,PIT)

对于非离子型表面活性剂,温度变化对其亲水性有较大的影响,使亲水基团的水合程度减少,从而使亲水性下降。利用这一特性低温时可制备O/W型微乳液,高温时可制备W/O型微乳液。因此,在某一温度范围,当温度升高时,体系从O/W型微乳液转变为W/O型微乳液,此时发生转相的温度称为相转变温度(即PIT),也称HLB温度[32]。

2.4 植物精油微乳液的性质

2.4.1 抗菌性

食品体系中存在脂质、蛋白质等成分产生相互作用,影响精油抗菌功效[33]。微乳化技术可以使抗菌剂在产品中均匀分布,提高生物利用率,减少成分相互作用,并提高食品的质量和安全性。

2.4.1.1 破坏细胞膜的完整性

细胞膜的完整性是菌体正常生长代谢的一个主要影响因素。核酸、蛋白质类的大分子物质贯穿于整个胞膜和胞质当中,是重要的单位结构物质。已有文献证明通过测定蛋白质含量和260 nm下核酸的吸光度表示细胞内溶物的释放,即细胞膜完整性遭到破坏[34]。陈硕[35]通过薄荷属精油微乳液处理大肠杆菌细胞,测定其吸光度,结果表明,薄荷精油微乳液杀菌首先与细菌细胞膜的相互作用导致膜结构和功能的根本性变化,然后导致细菌破裂而死亡。

2.4.1.2 诱导细胞膜上相关酶的活性

当精油微乳液从水相进入到细胞膜后,通过诱导膜上相关酶的活性,导致微生物死亡。徐士翔[36]通过月桂精油微乳液处理樱桃番茄,发现樱桃番茄的过氧化物酶,多酚氧化酶等酶活性均有显著的上升,主要原因是月桂精油微乳液粒径较小,且微乳液油相液滴表面为表面活性剂,更易通过植物细胞膜磷脂双分子层进入植物细胞内部,产生诱导作用,从而达到抑菌、抗病的作用。

2.4.2 抗氧化性

很多精油微乳液中都含有抗氧化活性物质,其抗氧化机制[37]主要为:(1)清除自由基;(2)与金属离子螯合;(3)抑制脂质过氧化。抗氧化性评价主要有自由基清除能力和对脂质氧化的抑制效果。买尔哈巴·塔西帕拉提[38]利用DPPH自由基清除能力评价百里香酚微乳体系的抗氧化活性,发现水包油型微乳百里香酚微乳体系具有较强的自由基清除能力,展现出良好的抗氧化活性较强的抗氧化活性。

2.4.3 稳定性

植物精油对光、热、氧等外界条件的稳定性较差,影响其抗菌效果。因此,采用微乳技术既能保护精油不受光、热、氧等外环境因素的影响,而且还可以有效抑制精油挥发、增强其水溶性和抑菌活性。崔绮嫦等[39]通过构建牛至精油和百里香精油微乳体系,在精油微乳液中添加适量无机电解质、改变微乳液pH以及低温和常温放置一段时间等方法评价了微乳液的稳定性,发现微乳液仍保持透明状态,说明精油微乳液具有良好的稳定性。郭锦棠等[40]通过将丁香、肉桂、大蒜3种抗菌性微乳液放置在室温下, 并定期进行取样观察和测试, 在实验时间内, 微乳液的外观未发生明显变化, 均为澄清透明的液体, 且没有出现分层破乳的现象,表明该体系具有较好的稳定性。

2.5 微乳制备过程中存在的问题

2.5.1 制备微乳需要大量的表面活性剂和助表面活性剂

微乳液中表面活性剂的含量一般大于20%,但表面活性剂用量较大时均有一定的毒性,在今后的研究中需要寻找低毒甚至无毒的表面活性剂,从而真正实现绿色、安全的保鲜效果。

2.5.2 微乳液各组分的最佳配比不易判断

目前,通常以伪三元相图法对微乳形成的各组分配比做定性和定量实验,在具体的实验操作中,需要消化大量的实验材料。在今后的研究中需要其他的方法进行辅助,减少实验材料的消耗。

3 精油微乳液在食品中的应用

3.1 微乳液在果蔬保鲜中的应用

新鲜果蔬在采摘、加工、运输和贮藏过程中,极易受到物理机械损伤和微生物污染,导致水果和蔬菜的营养价值降低和货架期缩短。因此世界各国对果蔬采后的保鲜工作也来越重视。近年来,植物精油作为一种天然的化学保鲜剂, 将植物精油制成微乳液用于果蔬保鲜成为国内外学者的研究热点。微乳液在果蔬保鲜中应用简要描述如表2 所示。与纯精油相比,精油微乳液可以实现精油的增效与增溶,对果蔬具有良好的保鲜效果。因此,将植物精油制备成微乳液以提高其稳定性和抗菌性具有一定的应用前景。

表2 微乳液在果蔬保鲜中的应用Table 2 Application of microemulsion in the preservation of fruits and vegetables

3.2 微乳液在肉类食品保鲜中的应用

肉类食品营养丰富,物理结构和化学成分复杂,极易发生氧化、微生物污染而腐败变质。目前,我国肉类加工业中微生物污染引起的肉制品腐败问题十分严重,迫切需要寻找高效、稳定、廉价的防腐剂或防腐手段。植物精油微乳液作为一种天然抗菌剂,具有良好的抗菌效果。

表3 微乳液在肉类食品保鲜中的应用Table 3 Application of microemulsion in fresh-keeping of meat food

将肉桂精油、丁香精油、生姜精油和柑橘精油制备成微乳液,微乳液可以延缓精油及其活性成分的挥发,能够提高精油在水中的溶解性,增强其抑菌性能,扩大了植物精油在食品工业中的应用范围。因此,精油微乳液为肉制品保鲜提供了新的思路。

3.3 微乳液在饮品中的应用

饮品中,调味剂通常以微乳状液和纳米乳状液的形式使用,以保持风味品质并防止产生不良风味。迄今为止,已将各种方法用于调味剂的纳米囊封,其中最重要的是乳化方法。微乳液适用于在透明饮料中同时输送香精油和亲脂性生物活性化合物。CHEN等[49]研究了在薄荷油和Tween-20与各种向日葵卵磷脂混合物配制的微乳液中递送β-胡萝卜素的可行性。发现水溶性和油溶性差的β-胡萝卜素溶解在颗粒尺寸小于10 nm的透明微乳液中,并且在室温下可稳定存放65 d。吴芳等[50]通过研究微乳对红茶茶汤沉淀的影响,发现微乳液处理后的红茶茶汤澄清透明无沉淀,茶汤中可溶性蛋白质、茶多酚、咖啡碱和儿茶素的保留率均有所提高。

将薄荷精油制成微乳液,能显著提高其水溶性和稳定性,延长饮品的保质期,对抑制饮品中微生物的生长效果显著。因此,精油微乳液将在饮品中具有一定的应用价值。

4 结语

植物精油是植物的次生代谢产物,是一种绿色、高效、天然的抗菌物质。它具有抑制食品中微生物的生长,维持食品品质等作用。但植物精油性质不稳定、易挥发等缺点影响其在食品中的应用。因此将植物精油制成微乳液,能提高其稳定性及生物利用率。本文简要介绍微乳液的定义及分类,详细介绍了微乳液的制备条件、制备方法和微乳液性质,总结了精油微乳液在果蔬、肉制品、饮品中的保鲜应用。

未来的研究方向:

(1)现阶段对精油微乳液的抑菌作用研究主要在细胞膜方面,未来进一步研究,尝试从分子角度对其抑菌机理进行解释;

(2) 精油成分复杂,各成分之间的相互作用机理尚不明确,进一步深入研究发挥作用的具体物质,开发出更高的精油利用价值;

(3)进一步优化微乳液的配方,使用具有抑菌作用的表面活性剂和助表面活性剂,进一步增加微乳液的抑菌效果;

(4)将植物精油微乳液,运用到食品包装材料,进一步研究是否具有一定的抗菌性和抗氧化性;

(5)精油微乳液在饮料、肉制品中应用较少,未来应扩大应用范围,探究是否具有优良的抑菌、抗氧化效果。

猜你喜欢
微乳乳液活性剂
藜麦蛋白Pickering乳液在新型果蔬酱料中的应用研究
复合改性沥青乳液制备及冷拌冷铺混合料性能研究
瓦克推出新的聚合物改性水泥防水涂料用VAE乳液
生物表面活性剂鼠李糖脂研究概况
几种表面活性剂的去油性能研究
翻白草总黄酮微乳的制备及其对糖尿病小鼠的治疗作用
动态光散射法测定月见草油微乳粒径的研究
天然非离子表面活性剂茶皂素性能的研究
天然表面活性剂在空间站洗浴中发泡性能的初步研究
每天你只涂两次乳液?