载Crisp1 DNA避孕疫苗壳聚糖纳米粒的制备及评价

2014-09-14 02:14胡朵朵董明珍徐明娟
中国生化药物杂志 2014年8期
关键词:脂质体复合物壳聚糖

胡朵朵,董明珍,徐明娟

(1.交通大学医学院附属新华医院妇科,上海200092;2.交通大学医学院附属新华医院妇产科,上海200433;3.第二军医大学长海医院妇产科,上海200433)

载Crisp1 DNA避孕疫苗壳聚糖纳米粒的制备及评价

胡朵朵1,董明珍2,徐明娟3Δ

(1.交通大学医学院附属新华医院妇科,上海200092;2.交通大学医学院附属新华医院妇产科,上海200433;3.第二军医大学长海医院妇产科,上海200433)

目的通过构建载Crisp-1DNA疫苗的壳聚糖纳米粒,评估真核表达质粒pcDNA3.1-Crisp-1的免疫避孕效应及壳聚糖纳米粒作为DNA避孕疫苗载体的有效性和安全性。方法复凝法制备质粒浓度分别为50、100、200μg/mL的壳聚糖-pcDNA3.1-Crisp-1纳米粒(CS/DNA NPs),紫外分光光度仪检测不同质粒浓度下DNA的包埋率。于透射电子显微镜(TEM)下观察纳米粒形态,用纳米粒度分析仪测定纳米粒的平均粒径、多分散度和zeta电位。1%琼脂糖凝胶电泳分析壳聚糖纳米粒与质粒的结合力及在核酸酶条件下壳聚糖纳米粒对质粒DNA的保护作用。然后将载Crisp-1DNA疫苗的壳聚糖纳米粒直接转染至COS-7细胞,与脂质体比较其细胞毒性,细胞转染分为4组:CS/DNA纳米复合物转染组:直接加入CS/DNA复合物;脂质体转染组:按脂质体转染法转染质粒pcDNA3.1-Crisp-1;pcDNA3.1空载体组:转染过程中加入空载体pcDNA3.1;空白对照组:不给予任何干预措施。并用实时荧光定量PCR和间接免疫荧光细胞化学法鉴定转染后mCrisp-1在COS-7细胞内的表达。结果采用紫外分光光度仪检测壳聚糖纳米粒对不同浓度质粒DNA的包埋率,结果显示,3种浓度下质粒包埋率均达90%以上,但当质粒浓度为100μg/mL时,壳聚糖对质粒DNA的包埋率最高(94.09±0.17)%,且与另2组相比差异具有统计学意义(P<0.05)。透射电子显微镜下观察发现CS/DNA纳米复合物形态较为规则,近球形,大小较均一,直径多在150~200 nm之间,散在分布,分散性好。纳米粒度分析仪测定结果显示,纳米粒平均直径为189.3 nm,多分散指数为0.459,粒径分布范围较窄。Zeta电位约为+0.2mV。1%琼脂糖凝胶电泳结果显示,壳聚糖与DNA疫苗结合后使质粒DNA完全阻滞于加样孔中,并可保护质粒DNA不受核酸酶降解。MTT试验结果显示CS/DNA纳米复合物组细胞存活率与裸质粒组相比无明显差异,但显著高于脂质体组(P<0.01)。将未处理的正常COS-7细胞和经不同方式转染pcDNA3.1-Crisp-1的COS-7细胞分别行间接免疫荧光检测,结果显示,无论是用脂质体Lipofectamine 2000TM介导转染的COS-7细胞还是CS/DNA纳米复合物直接转染的COS-7细胞中均可看到明亮的绿色荧光,而未处理组和pcDNA3.1空载体转染组细胞未见绿色荧光,表明壳聚糖可有效的介导Crisp-1DNA疫苗在真核细胞中表达。qRT-PCR检测经不同方法转染后COS-7细胞中Crisp-1 mRNA的表达水平,结果分析显示,空白对照组和pcDNA3.1空载体组未检测到Crisp-1 mRNA表达,脂质体Lipofectamine 2000TM组Crisp-1 mRNA表达水平略高于CS/DNA纳米复合物转染组,但差异无统计学意义。结论壳聚糖纳米粒可显著提高pcDNA3.1-Crisp-1DNA疫苗的免疫效应,并具有良好的安全性。

免疫避孕;疫苗;富含半胱氨酸分泌蛋白-1;DNA;生育

目前,非病毒载体由于具有较好的生物安全性已越来越多地运用于基因治疗研究中。壳聚糖是一种带正电荷的天然聚合物,无细胞毒性,且具有很好的生物相容性和生物降解性,近年来作为一种新开发的载体系统得到了广泛而深入的研究。本研究采用复凝法构建了载Crisp-1DNA疫苗的壳聚糖纳米粒,并对其相关物理学、生物学活性进行测定,最后通过与脂质体Lipofectamine 2000TM转染进行比较,评估其细胞毒性和转染效率,为后续研究其免疫避孕效应奠定了基础。

1 材料与方法

1.1 质粒和细胞 真核表达质粒pcDNA3.1-Crisp-1(本实验室前期构建);pcDNA3.1(+)载体(Novagen公司);COS-7细胞(中国科学院上海生化细胞所);感受态大肠杆菌(Escherichia coli)DH5α(本实验室保存)。

1.2 溶液的配制

20mM冰乙酸(HAc):吸取冰乙酸114.3μL,加去离子水至100mL,混匀。

5 mM醋酸钠(NaAc):称取NaAc-3H2O 34.02 mg,加入40mL去离子水搅拌溶解后加水定容至50mL。

5mM Na2S04溶液:称取无水Na2S0435.5mg,加入40mL去离子水搅拌溶解后定容至体积为50mL。

壳聚糖储存液(5mg/mL):0.02%壳聚糖溶液:称取壳聚糖10.0mg,溶解2mL 20mM冰乙酸溶液中,37℃,200 r/min摇床过夜,使壳聚糖充分溶解,得到5mg/mL壳聚糖储存液,4℃保存备用。

MTT溶液(5mg/mL):称取MTT 0.5 g,溶于100mL的PBS溶液中,0.22μm针式滤器过滤除菌,-20℃避光保存。

1.3 方法

1.3.1 壳聚糖-pcDNA3.1-Crisp-1纳米复合物的制备:取壳聚糖储存液2mL,加入至48m L 5mM NaAc溶液中,使壳聚糖浓度为0.02%(W/V);将0.02%壳聚糖溶液和5mM Na2SO4溶液分别用0.22μM针式滤器过滤除菌;取适量pcDNA3.1-Crisp-1质粒溶液加入5mM Na2SO4溶液中,调节其浓度分别为50、100、200μg/mL,分别记为CS/DNA 50,CS/DNA 100,CS/DNA 200。将0.02%壳聚糖溶液和3种不同浓度的pcDNA3.1-Crisp-1/Na2SO4(5mM)溶液置于55℃恒温水浴30min。分别取等体积的壳聚糖溶液与pcDNA3.1-Crisp-1溶液迅速混匀,涡旋30 s,室温静置30 min,所得pcDNA3.1-Crisp-1-壳聚糖纳米粒悬液即可用于生物学鉴定和细胞转染。

1.3.2 DNA包埋率的计算:取上述不同质粒浓度的纳米粒悬液200μL,4℃,14000 g离心30min,收集上清液,紫外分光光度法(OD260)检测上清液中质粒DNA的含量,并计算不同质粒浓度下的包埋率。

1.3.3 纳米粒形态观察:取少量上述制备好的纳米粒混悬液滴至铺有碳膜的铜网上,静置2min;用滤纸吸干混悬液,滴加2%磷钨酸,负染2min;于透射电子显微镜(TEM)下观察纳米粒形态,并选取有代表性的视野拍照。

1.3.4 凝胶阻滞分析:制备1%琼脂糖凝胶;取5μL CS/DNA纳米复合物与1μL 6×DNA电泳上样缓冲液混匀后,用移液枪将样品加入凹孔中;紫外凝胶成像仪观察并照相,分析壳聚糖纳米粒与质粒的结合力。

1.3.5 DNase I保护试验:取壳聚糖纳米质粒复合物样本和裸质粒DNA溶液各20μL(含质粒DNA 1μg),分别加入0.2μL DNaseI,37℃反应30 min,0℃冰浴15 mim终止反应,以含0.5μg/mL溴化乙锭的1%琼脂糖凝胶进行电泳分析(100 V,30min)。

1.3.6 壳聚糖-pcDNA3.1-Crisp-1纳米粒复合物的转染:细胞转染分为4组:CS/DNA纳米复合物转染组:直接加入CS/DNA复合物;脂质体转染组:按脂质体转染法转染质粒pcDNA3.1-Crisp-1;pcDNA3.1空载体组:转染过程中加入空载体pcDNA3.1;空白对照组:不给予任何干预措施。转染方法:细胞铺板:用0.25%胰酶消化单层培养的COS-7细胞,计数后以2×105细胞/孔接种于6孔板,加入不含抗生素的培养基2mL,37℃,5%CO2培养细胞23~48 h,使细胞生长稳定并达到细胞贴壁覆盖率80%左右;转染前1天,吸弃6孔板中的培养液,加入2mL无血清无抗生素的培养液将细胞洗涤2次,加入新鲜的完全培养基待转染。脂质体转染组加入Opti-MEMIReduced Serum Medium培养细胞,将不同体积的CS/DNA纳米复合物(使DNA含量为4μg/孔)直接加入到相应的细胞孔中,摇动培养板,轻轻混匀;37℃,5%CO2继续培养4~6 h后,吸弃转染液,更换完全培养基,继续培养48 h后取细胞检测转染基因的表达。

1.3.7 间接免疫荧光细胞化学检测转染后Crisp-1在COS-7细胞中的表达:将多聚赖氨酸处理过的盖玻片自然晾干,高压蒸汽灭菌备用;用0.25%胰酶消化对数生长期的COS-7细胞,调整细胞浓度;将上述处理过的无菌盖玻片置于六孔板中,以1×105细胞/孔加入细胞悬液;进行质粒转染;终止转染后48 h,吸出培养基,用PBS洗3次,每次5 min;4%预冷的多聚甲醛-PBS固定液加入培养孔中,固定15 min;吸出固定液,PBS洗3次,每次5min;加入0.5 mL 0.2%Triton X-100溶液,通透10 min;吸出Triton X-100溶液,PBS洗3次,每次5min;加入10%BSA 37℃封闭1 h;吸出10%BSA,加入一抗孵育液(10%BSA稀释,山羊抗鼠CRISP-1单抗,1∶100稀释),放入湿盒中4℃过夜;吸出一抗孵育液,PBS洗3次,每次5min;加入二抗孵育液(10%BSA稀释,FITC标记的兔抗山羊IgG,1∶100稀释),37℃避光孵育90min;吸出二抗孵育液,PBS洗3次,每次5min;50%甘油-PBS封片,荧光显微镜下观察。

1.3.8 qRT-PCR检测转染后COS-7细胞中Crisp-1 mRNA的表达:取上述转染48 h后的COS-7细胞,分别提取总RNA,逆转录成cDNA,行qRT-PCR扩增检测各组细胞中CRISP-1 mRNA的相对表达量。

1.3.9 细胞毒性检测:用0.25%胰酶消化单层培养的COS-7细胞,以每孔内1×104个细胞接种于96孔板;培养至细胞贴壁后,将裸DNA、脂质体-质粒DNA、及壳聚糖-质粒DNA分别加入细胞孔中,只加培养液的空白孔调零,非处理细胞为空白对照组;温箱中培养48 h后取出96孔板,加入MTT 20μL,继续培养4 h;吸弃全部上清液,每孔加入150μL DMSO,摇床上震荡10min,使结晶物充分溶解;选择570 nm波长,以空白孔调零,酶标仪测其吸光度值并计算各组细胞存活率。各组细胞存活率计算方法为:细胞存活率(%)=OD570(实验组)/OD570(空白对照组)×100%

1.4 统计学方法 所有实验数据采用SPSS 13.0软件包进行处理和统计分析。正态计量资料用“±s”表示,采用One-way-ANOVA进行组间比较,以P<0.05为差异有统计学意义。

2 结果

2.1 DNA包埋率 采用紫外分光光度仪检测壳聚糖对不同浓度质粒DNA的包埋率,结果显示,3种浓度下质粒DNA的包埋率均达90%以上,但当质粒浓度为100μg/mL时,壳聚糖对质粒DNA的包埋率最高,与另2组相比差异具有统计学意义(P<0.05,见表1)。

表1 不同质粒浓度下壳聚糖对pcDNA3.1-Crisp-1的包埋率Tab.1 Encapsulation rate of chitosan on pcDNA3.1-Crisp-1 of different concentrations of plasmid

2.2 CS/DNA纳米复合物的形态学观察 透射电子显微镜观察结果显示,CS/DNA纳米复合物形态较为规则,近球形,大小较均一,直径多在150~200 nm之间,散在分布,分散性好(见图1)。

图1 壳聚糖/pcDNA3.1-Crisp-1纳米粒透射电镜成像Fig.1 Transmission electron microscopy imaging of Chitosan/pcDNA3.1-Crisp-1 nanoparticles

2.3 凝胶阻滞分析 1%琼脂糖凝胶电泳结果显示,壳聚糖与DNA疫苗结合后使质粒DNA阻滞于加样孔中,未观察到质粒跑出,而裸质粒组可见2条清晰的质粒条带,加样孔中无质粒残留,说明壳聚糖能有效地包裹质粒DNA(见图2)。

图2 壳聚糖纳米粒与质粒DNA结合试验电泳图Fig.2 Electrophoresis of binding test of Chitosan nanoparticleswith plasmid DNA

2.4 DNase I保护试验 将各组质粒与DNaseI共同孵育后,1%琼脂糖凝胶电泳结果如图3所示,裸质粒DNA孔中无任何条带出现;而不同质粒DNA浓度的CS/DNA纳米复合物中的质粒DNA均被阻滞于上样孔中,说明裸质粒DNA被DNase I降解,而壳聚糖能保护质粒DNA不受核酸酶降解。

图3 壳聚糖纳米粒对质粒DNA保护试验电泳图Fig.3 Electrophoresis of protection test of Chitosan nanoparticles on plasmid DNA

2.5 细胞毒性检测(MTT) MTT试验结果显示以未处理组细胞成活率为100%计算,裸质粒DNA组、脂质体转染质粒DNA组、CS/DNA纳米复合物组细胞存活率分别为(86.74± 3.26)%、(29.13±4.02)%、(83.08±5.64)%。CS/DNA纳米复合物组细胞存活率与裸质粒组相比无明显差异,但显著高于脂质体组(P<0.01,见图4)。

图4 各组细胞存活率比较Fig.4 Comparison of cell survival rate*P<0.01,与裸质粒DNA组相比较,compared with nude DNA group;#P<0.01,与CS/DNA组相比较,compared with CS/DNA group

2.6 间接免疫荧光细胞化学检测经不同方法转染后Crisp-1在COS-7细胞中的表达 将未处理的正常COS-7细胞和经不同方式转染pcDNA3.1-Crisp-1的COS-7细胞用4%多聚甲醛-PBS固定液固定后,分别行间接免疫荧光(IIF)检测。如图5所示,经过相同处理后,无论是用脂质体Lipofectamine 2000TM介导转染的COS-7细胞中还是载DNA壳聚糖纳米微球直接转染的COS-7细胞中均可看到明亮的绿色荧光,而未处理组和pcDNA3.1空载体转染组未见绿色荧光,表明壳聚糖亦可有效的介导Crisp-1DNA疫苗在真核细胞中表达。

图5 pcDNA3.1-Crisp-1质粒经不同方法转染COS-7细胞后Crisp-1的荧光表达Fig.5 Fluorescent expression of Crisp-1 in COS-7 cells transfected with pcDNA3.1-Crisp-1 plasmid by differentmethods

2.7 不同方法转染后COS-7细胞中Crisp-1mRNA的表达实时荧光定量PCR检测经不同方法转染后COS-7细胞中Crisp-1 mRNA的表达水平,结果见图6,溶解曲线分析显示Crisp-1和β-actin mRNA PCR产物均表现为单一峰,产物Tm值分别为82.5℃和86℃。荧光定量结果分析显示,空白对照组和pcDNA3.1空载体组未检测到Crisp-1mRNA表达,脂质体Lipofectamine 2000TM组Crisp-1 mRNA表达水平略高于CS/DNA纳米复合物转染组,但差异无统计学意义。

图6 实时荧光定量PCR检测COS-7细胞中Crisp-1 mRNA的表达水平*P<0.05,与对照组相比较Fig.6 Crisp-1 mRNA expression in COS-7 cells detected by real time fluorescent quantitative PCR*P<0.05,compared with the control group

3 讨论

近年来,DNA疫苗已引起了广大学者的重视并将其应用于多种疾病的治疗。但是多数研究显示:裸DNA疫苗经注射给药后,产生的免疫效应并不十分理想[1-3],分析其原因,可能是由于裸DNA带负电荷,而细胞膜上也带一定的负电荷,因此DNA难以通过脂质的细胞膜被细胞吸收,而在体内又易被核酸酶降解而迅速清除[2-4];另一方面,可能是质粒DNA转运到组织细胞尤其是抗原递呈细胞(APc)的效率较低,从而导致抗原表达水平低下[5-7]。因此,研制一种新的基因给药系统,保护DNA在体内免受生物环境的破坏,使其有效导入靶细胞,从而增强DNA疫苗的主动免疫效果,是DNA疫苗发展过程中的重要环节。

壳聚糖,是一种带正电荷的天然聚合物,其化学名为(1,4)-2-氨基-2-脱氧-8-D-葡萄糖,由于其无细胞毒性,具有很好的生物相容性和生物降解性、易与DNA结合形成纳米微粒等特点[8-9],近年来作为一种新的载体系统已经被成功的应用于基因的体内外转染[10-12]。并有研究证实,壳聚糖与不同抗原一起给药时可起到协同作用,优化免疫效果[13-14]。导致裸质粒DNA免疫效应低下的原因之一是其在体内易被核酸酶降解,1998年Jameela SR等率先证实,壳聚糖纳米粒包裹寡聚核苷酸后,可增加寡核苷酸进入细胞内的量,并增加寡核苷酸抗核酸酶的能力,增强其在细胞内的稳定性,有效保护DNA不被核酸酶降解,使之更为持久地发挥效应[15]。该结果后来得到了很多学者的证实。本实验通过DNase I消化实验检测CS-pcDNA3.1-Crisp-1纳米复合物的抗核酸酶能力,结果发现当DNase I浓度为25U/mL,远超过生理剂量时,CS-pcDNA3.1-Crisp-1纳米复合物能有效保护DNA不被降解。

本文采用2种不同的方法进行转染,结果显示以壳聚糖纳米粒为载体的pcDNA3.1-Crisp-1也可在COS-7细胞中有效表达,且表达部位一致。实时荧光定量PCR检测结果显示脂质体Lipofectamine 2000TM组Crisp-1mRNA表达水平要略高于CS/DNA纳米复合物转染组,但差异无统计学意义。脂质体在临床上作为基因载体应用的最大障碍为其细胞毒性,在本实验中,我们采用MTT试验对2种方法转染后COS-7细胞的存活率进行检测,结果显示:与脂质体Lipofectamine 2000TM转染方法相比,壳聚糖组细胞存活率显著高于脂质体组(P<0.01),说明壳聚糖微粒具有较小的细胞毒性和较高的安全性。因此,本实验成功地构建了以壳聚糖纳米微粒为载体的Crisp-1-DNA避孕疫苗,并证实壳聚糖可有效地将DNA避孕疫苗转染至真核细胞中,且安全无毒性。

[1]Naz RK,Gupta SK,Gupta JC,etal.Recentadvances in contraceptive vaccine development:amini-review[J].Hum Reprod,2005,20(12):3271-3283.

[2]Finer LB,Henshaw SK.Disparit ies in rates of unintended pregnancy in the United States,1994 and 2001[J].Perspect Sex Reprod Health,2006,38(2):90-96.

[3]Ellerman DA,Busso D,Maldera JA,et al.Immunocontraceptive properties of recombinant sperm protein DE:implications for the development of novel contraceptives[J].Fertil Steril,2008,89(1):199-205.

[4]谢淑武,孙祖越,曹霖.附睾与男性避孕研究进展[J].生殖与避孕,2006,26(2):99-103.

[5]Naz RK.Vaccine for contraception targeting sperm[J].Immunol Rev,1999,171:193-202.

[6]Naz RK.Antisperm contraceptive vaccines:wherewe are and wherewe are going?[J].Am JReprod Immunol,2011,66(1):5-12.

[7]Cameo MS,Blaquier JA.Androgen-controlled specific proteins in rat epididymis[J].JEndocr,1976,69(1):317-324.

[8]Kohane AC,Cameo MS,Pieiro L,et al.Distribut ion and site of production of specific proteins in the rat epididymis[J].Biol Reprod,1980,23(1):181-187.

[9]Kohane AC,Gonzlez Echeverra FM,Pieiro L,et al.Interaction of proteins of epididymal origin with spermatozoa[J].Biol Reprod,1980,23(4):737-742.

[10]Rochwerger L,Cohen DJ,Cuasnicu PS.Mammalian sperm-egg fusion:the rat egg has complementary sites for a sperm protein thatmediates gamete fusion[J].Dev Biol,1992,153(1):83-90.

[11]Perez Martinez S,Conesa D,Cuasnicu PS.Potential contraceptive use of epididymal proteins:evidence for the participation of specific antibodiesagainst ratepididymal protein DE inmale and female fertility inhibition[J].JReprod Immunol,1995,29(1):31-45.

[12]Ellerman DA,Brantua VS,Martinez SP,et al.Potential contraceptive use of epididymal proteins:immunizat ion ofmale ratswith epididymal protein DE inhibits sperm fusion ability[J].Biol Reprod,1998,59(5):1029-1036.

[13]Cohen DJ,Ellerman DA,CuasnicúPS.Mammalian sperm-egg fusion:Evidence that epididy al protein DE plays a role in mouse gamete Fusion[J].Biol Reprod,2000,63(2):462-468.

[14]Ellerman DA,Cohen DJ,Weigel Muñoz M,et al.Immunologic behavior of human cyste ne-rich secretory protein 1(hCRISP1)in primates:prospects for immunocontraception[J].Fertil Steril,2010,93(8):2551-2556.

[15]Da Ros VG,Maldera JA,WillisWD,et al.Impaired sperm fertilizing ability in mice lacking Cysteine-Rich Secretory Protein 1(CRISP1)[J].Dev Biol,2008,320(1):12-18.

(编校:吴茜,秦晓英)

Preparation and evaluation of chitosan nanoparticles carrying Crisp1 DNA contraceptive vaccine

HU Duo-duo1,DONG Ming-zhen2,XU Ming-juan3Δ

(1.Department of Gynaecology,Xinhua Hospital Affiliated to Medical College of Jiaotong University,Shanghai200092,China;
2.Department of Obstetrics and Gynecology,Xinhua Hospital Affiliated to Medical College of Jiaotong University,Shanghai200433,
China;3.Department of Obstetrics and Gynecology,Second Military Medical University Changhai Hospital,Shanghai200433,China)

ObjectiveTo evaluate immunological contraception effect of eukaryotic expression plasmid pcDNA3.1-Crisp-1 and the efficacy and safety of chitosan nanoparticle as carrier of DNA contraceptive vaccine by constructing chitosan nanoparticles containing Crisp-1DNA vaccine.MethodsChitosan-pcDNA3.1-Crisp-1 Nanoparticles(CS/DNA NPs)were prepared by complex coagulation technology at the plasmid concentration of 50,100,200μg/mL respectively.Encapsulation rate of DNA in different concentration of plasmids were measured by UV spectrophotometer.The morphology of the CS/DNA NPswere observed by transmission electron microscope(TEM),the average particle size,polydispersity and zeta potentialweremeasured by nano particle analyzer.The binding force of chitosan nanoparticles and plasmid and the protective effect of chitosan nanoparticles on DNA were determined by 1%agarose gel electrophoresis.CS/DNA NPswere transfected into COS-7 cells directly in vitro,the cytotoxicity on cellwere evaluated by MTT.Transfected COS-7 cells were divided into four groups,CS/DNA NPs group:added CS/DNA NPs directly;lipofection transfection group:pcDNA3.1-Crisp-1was transfected with lipofectin transfection;pcDNA3.1 empty vector group:

pcDNA3.1 empty vector in the transfection process;blank control group:received no interveningmeasure.The expression ofmCrisp-1 in COS-7 cellswere determined by qRT-PCR and IF.ResultsThe UV spectrophotometer results showed that the plasmid embedding rate were allmore than 90%at the three concentrations.However,embedding rate at the concentration of100μg/mL(94.09±0.17)%was highest,which was significantly higher than the other two groups(P<0.05). CS/DNA NPswere observed by TEM,the shape was regular,spherical or elliptical,and the size of those particles was between 150~200 nm with a narrow distribution.The nano-particle analyzer results showed that themean diameter of CS/DNA NPswas 189.3 nm,and the polydispersity index was 0.459 with a narrow particle size distribution range.The zeta potentialwas approximately+0.2mV.Gel electrophoresis results showed that themigration of plasmid DNA was completely retarded in the sample wells due to the binding capacity of chitosan with DNA.and plasmid DNA in the CS/DNA NPs was protected from nuclease degradation.In MTT assay,in contrast to the control naked DNA,the cell viability of CS/DNA NPs had no significantly difference,however,itwas significantly higher than for Lipofectamine 2000TM(P<0.01).Untreated normal COS-7 cells and transfected by pcDNA3.1-Crisp-1cellswere detected by indirect immunofluorescence,results showed that the bright green fluorescence could be observed both in COS-7 cells transfected with CS/DNA NPs and Lipofectamine 2000TM.However,COS-7 cells transfected with pcDNA3.1 alone or untreated normal cells failed to show any fluorescence,showed that chitosan could effectivelymediate Crisp-1DNA vaccine express in eukaryotic cells real-time PCR analysis showed that there was no Crisp-1 mRNA expressed in neither untreated cells nor pcDNA3.1 vector transfected cells.The Crisp-1 mRNA expression level of Lipofectamine 2000TMtransfected cells was slightly higher than that of CS/DNA NPs transfected cells,however,there was no significant difference. Conclusion Chitosan nanoparticles could significantly increase immunological effect of the pcDNA3.1-Crisp-1 DNA vaccine,and have good security.

immunocontraception;vaccine;cysteine-rich secretory protein-1;DNA;fertility

R71

A

1005-1678(2014)08-0038-05

青年科研项目(11QYJ023)

胡朵朵,女,主治医师,博士在读,研究方向:妇科肿瘤,E-mail:ya_duo@hotmail.com;徐明娟,通信作者,女,主任医师,博士,研究方向:产科危重病的诊治,E-mail:mingjuanxu68@yahoo.com。

猜你喜欢
脂质体复合物壳聚糖
氧化石墨烯-壳聚糖复合材料对水体中农药的吸附
碳量子点黄芩素复合物对金黄色葡萄球菌抑菌作用的研究
PEG6000修饰的流感疫苗脂质体的制备和稳定性
DC-Chol阳离子脂质体佐剂对流感疫苗免疫效果的影响
三种不同分子量6-羧基壳聚糖的制备、表征及其溶解性
大黄酸磷脂复合物及其固体分散体的制备和体内药动学研究
脂质体研究进展及制备方法
美洲大蠊药渣制备壳聚糖工艺的优化
白杨素磷脂复合物的制备及其药动学行为
TPGS修饰青蒿琥酯脂质体的制备及其体外抗肿瘤活性